
Item Content

Language Swift 2.2

iOS Version iOS 8.0 and above

framework PrinterCommandSwift.framework

Content Date

Coding CPCL Command SDK 2016.4.21

Establishing CPCL SDK Reference Guide 2016.8.22

CPCL iOS SDK Reference Guide

Update

CPCL iOS SDK Reference Guide
Update
1 Label Formatting Commands

1.1 Label Sessions
1.2 Barcode

1.2.0 Barcode 1D
1.2.1 Barocde Aztec
1.2.2 Data Matrix
1.2.3 DataBar(RSS) and CompositeBarcodes
1.2.4 Maxicode
1.2.5 PDF417
1.2.6 QR Code

1.3 Barcode Text
1.4 Bat-Indicator
1.5 Box
1.6 CompressedGraphics
1.7 Concat
1.8 Count
1.9 End/Print
1.10 ExpandedGraphics
1.11 FontGroup
1.12 Image
1.13 Centimeters, Dots, Inches, Millimeters
1.14 Inverse Line

1.15 Left, Center, Right
1.16 Line
1.17 Move
1.18 Multi-Line
1.19 Page Width
1.20 Pattern
1.21 PCX
1.22 PCXMAG
1.23 Persist
1.24 Rotate
1.25 Scale Text
1.26 Scale To Fit
1.27 Set Bold
1.28 Set Mag
1.29 Set Spacing
1.30 Temp Move
1.31 Text
1.32 Page Type
1.33 Background
1.34 BackText
1.35 Turn on Status
1.36 PrinterStatus
1.37 PrinterSN
1.38 SetCodePage
1.39 SetArabicTransform
1.40 GetArabicTransformStatus
1.41 SetThaiTransformStatus
1.42 SetVietnameseTransform
1.43 GetVietnameseTransformStatus

2 Line Print Commands
2.1 Left Margin
2.2 LF equals CRLF (Line Print)
2.3 Orient (Line Print)
2.4 Line Print Position Adjust
2.5 Set LF
2.6 Set LP
2.7 Set LP Buffer
2.8 Set LP Timeout
2.9 Set Position
2.10 Line Feed
2.11 Carriage Return
2.12 Line Print Graphics

3 Font Commands
3.1 File Header
3.2 Char Set And Country

4 Media Management Commands
4.1 Auto Cal
4.2 Auto Pace
4.3 Bar Sense

4.4 Contrast
4.5 Feed
4.6 Form
4.7 Gap Sense
4.8 Journal
4.9 Label
4.10 Multi
4.11 No Pace
4.12 Out Of Paper
4.13 Pace
4.14 Paper Jam
4.16 PostFeed/PreFeed
4.17 Present AT
4.18 Reverse
4.19 Set Feed Length and Skip (Set FF)
4.20 Set TOF
4.21 Speed
4.22 Tone
4.23 Turn
4.24 Form Feed

5 Status Enquiry Commands
5.1 Name
5.2 Version
5.3 Printer Status
5.4 Extended Printer Status
5.5 Get Version Information

6 Utility and Diagnostic Commands
6.1 Abort
6.2 Baud
6.3 Beep
6.4 Capture
6.5 Check Sum/Check Sum Vertical
6.6 Char Count
6.7 Delay Actions
6.8 Display
6.9 Dump
6.10 Dump Image
6.11 Get Date
6.12 Get Time
6.13 Get Var
6.14 Line Terminator
6.15 Max Label Height
6.16 On Feed
6.17 On Low Battery
6.18 Re-Run
6.19 Set Date
6.29 Set Time
6.30 Set Version
6.31 Set Var and DO

6.32 Timeout
6.33 Wait
6.34 Label Session Position
6.35 Sound Printer Bell
6.36 Backspace
6.37 Get or Set CCL Key
6.38 Send Two-Key Report to Host
6.39 Send User Label Count
6.40 Acknowledge Reset
6.41 Shut Down Printer
6.42 Print Two-Key Report

7 Magnetic Card Reading Commands
7.1 MCR
7.2 MCR-CAN
7.3 MCR-QUERY

8 File Commands
8.1 Define and Use Format Sessions
8.2 Delete
8.3 Dir
8.4 End
8.5 File
8.6 Type

1 Label Formatting Commands

1.1 Label Sessions

Function

A label that contains information to be printed begins with the ! character, followed
by a series of ASCIInumbers which represent information about the label that
follows.

In order for this session to be detected, the first character of the Offset parameter
must be a digit.

Swift (iOS)

Java (Android)

C (Windows)

public func cpclLabel(offset offset: Int, hRes: Int, vRes: Int,

height: Int, quantity: Int)

Field
Name

Description Type
Valid
Range

Offset
The number of units to offset all fields from
the left side of the label horizontally.

Units
Number

0 to
65535

Horizontal
Res.

The horizontal resolution of this label,
expressed in dots per inch.

Number
(in dpi)

100 or
200

Vertical
Res.

The vertical resolution of this label,
expressed in dots per inch.

Number
(in dpi)

100 or
200

Height The height of the label in units.
Unit
Number

0 to
65535

Quantity The number of copies of the label to print.
Number
(in
quantity)

0 to
1024

Parameter

Sample Code (Swift)

1.2 Barcode

1.2.0 Barcode 1D

Function

The barcode command has several syntaxes based on the type of barcode being
printed. The mostcommon syntax is the 1D barcode format.

Swift (iOS)

Parameter

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 210, quantity: 1)

cpclCenter()

cpclText(rotate: 0, font: 4, fontSize: 0, x: 10, y: 0, text: "This is

a ! command.")

cpclPrint()

public func cpclBarcode(type type: String, width: Int, ratio: Int,

height: Int, x: Int, y: Int, barcode: String)

Parameter Type Description Valid Range

Type
Space
Terminated
String

The type of barcode to
print.

See table below.

Width
5 Digit Unit
Number

The width of a narrow
bar.

0 to 65535 units

Ratio
5 Digit
Number

The ratio of wide to
narrow bars.

0 to 4, 20 to 30.

Height
5 Digit Unit
Number

The height of the
barcode.

0 to 65535 units

X
5 Digit Unit
Number

The X position where
the barcode begins

0 to 65535 units

Y
5 Digit Unit
Number

The Y position where
the barcode begins

0 to 65535 units

Data
Terminated
String

The data to be encoded
into a barcode.

Up to 8191 bytes of
Alpha Numeric Data.

Sample Code (Swift)

1.2.1 Barocde Aztec

Function

The BARCODE AZTEC command is used to print Aztec Code barcodes in the

CPCL language.
VBARCODE AZTEC is identical to BARCODE, except it is oriented vertically.

Note that this command has optional parameters XD, EC, F, ME, M and ID. In
order to use these parameters, the optional parameter must be followed by a
space, then a number which complies with the table below.

Swift (iOS)

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 210, quantity: 1)

cpclBarcode(type: CPCLBarcodeType.Code128.rawValue, width: 1, ratio:

1, height: 50, x: 150, y: 10, barcode: "horizontal")

cpclText(rotate: 0, font: 4, fontSize: 0, x: 180, y: 60, text:

"HORIZ.")

cpclBarcodeVertical(type: CPCLBarcodeType.Code128.rawValue, width: 1,

ratio: 1, height: 50, x: 10, y: 200, barcode: "vertical")

cpclText(rotate: 90, font: 4, fontSize: 0, x: 60, y: 180, text:

"vertical")

cpclPrint()

Parameter Type Description Valid Range

X
5 Digit Unit
Number

The X position where the
barcode begins

0 to 65535
units

Y
5 Digit Unit
Number

The Y position where the
barcode begins

0 to 65535
units

Width 5 Digit Number
The dot-width of a single
element in the code

1 to 36

ERL 5 Digit Number
The error recovery level or
size

See below

Flags 5 Digit Number
Is the barcode using flag
escapes?

0 or 1

Menu 5 Digit Number Is the barcode a menu? 0 or 1

Multi
5 Digit Number

Is the barcode a structured
append part?

0 or 1

ID
Or Space
Terminated
String

The structured append ID
field

Up to 25 ASCII
Characters

Data
Terminated
String

The data to be encoded in
the barcode

See below

Parameter

Sample Code (Swift)

1.2.2 Data Matrix

Function

The BARCODE DATAMATRIX command is used to print Data Matrix barcodes in

the CPCL language.
The command has a number of optional parameters, any number of which may
be specified. If a parameter is specified more than once, the last value specified
is used.

Swift (iOS)

public func cpclBarcodeAztec(xPos xPos: Int, yPos: Int, width: Int,

erc: Int, flags: Int, menu: Int, multi: Int, idField: String)

Parameter Type Description
Valid
Range

X
5 Digit Unit
Number

The X position where the
barcode begins

0 to 65535
units

Y
5 Digit Unit
Number

The Y position where the
barcode begins

0 to 65535
units

Scale 5 Digit Number The scale of the barcode. 0 to 65535

ECC 5 Digit Number
Specifies the level of error
correction.

See Below.

Columns 5 Digit Number
Specifies the number of columns
to use.

See Below.

Rows 5 Digit Number
Specifies the number of rows to
use.

See Below.

Format 5 Digit Number
Specifies the data format when
ECC is not 200.

1 to 6

EscapeChar
Space
Terminated
String

Specifies the escape character to
use.

See Below.

Data Raw String Data for barcode See Below.

Parameter

Sample Code (Swift)

1.2.3 DataBar(RSS) and CompositeBarcodes

Function

This command is used to print GS1 Databar (also known reduced space
symbology) barcodes in CPCL, as well as Composite barcodes. There are 12
supported sub-types of GS1 Databar\Composite barcodes.
All barcode types supported by this command can consist of both a 1D and 2D
component. If the barcode contains a 2D component, the output is referred to
as a composite barcode. The 2D portion is optional, but the 1D portion is
required.
If the parameters of the barcode are incorrect, in place of the barcode, a text

public func cpclDataMatrix(xPos xPos: Int, yPos: Int, scale: Int, ecc:

Int, columns: Int, rows: Int, format: Int, escapeChar: Int)

public func cpclAddBarcodeDataMatrixData(barcodeDataMatrix: String)

public func cpclEndDataMatrix()

message indicating the problem encountered while trying to form the barcode
will be printed.

Swift (iOS)

Parameter Type Description Valid Range

X
5 Digit Unit
Number

The X position where the barcode
begins

0 to 65535

Y
5 Digit Unit
Number

The Y position where the barcode
begins

0 to 65535

Scale
5 Digit Unit
Number

The X and Y scaling factor of the
barcode.

0 to 65535

LHeight
5 Digit Unit
Number

Height of the linear part of the
barcode

0 to 65535

SHeight
5 Digit Unit
Number

Height of the separator between
barcode parts

0 to 65535

Segs
5 Digit Unit
Number

The maximum number of
segments per row

0 to 65535

Type
5 Digit
Number

The type of RSS barcode to print. 1 to 12

Data
Terminated
String

1D and 2D Data to Print
8191 alphanumeric
characters

Parameter

Sample Code (Swift)

1.2.4 Maxicode

Function

The BARCODE MAXICODE command is used to print MaxiCode barcodes in the

CPCL language. Only type-2 MaxiCode barcodes (which contain formatted data
with a structured carrier message a d numeric postal code) can be used in CPCL.
VBARCODE MAXICODE is identical to BARCODE MAXI . MaxiCode barcodes do

not print in vertical orentation.
The barcode consists of fields that are represented with a field name followed
by data. This field and data line can be repeated as many times as necessary to
complete the barcode.

public func cpclBarcodeRSS(xPos xPos: Int, yPos: Int, scale: Int,

lHeight: Int, sHeight: Int, segs: Int, type: Int, barcodeRSS: String)

MaxiCode barcodes are always of a fixed size, there are no options to adjust its
size.

Swift (iOS)

Parameter Type Description
Valid
Range

X
5 Digit Unit
Number

The X position where the
barcode begins

0 to 65535
units

Y
5 Digit Unit
Number

The Y position where the
barcode begins

0 to 65535
units

Field
Space Terminated
String

The ratio of wide to narrow
bars.

1 or 2

Data Terminated String
Unit-width of the barcode in
dots

0 to 65535
dots

Parameter

Sample Code (Swift)

1.2.5 PDF417

Function

The BARCODE PDF-417 command is used to print PDF417 barcodes in the CPCL

language.
The command has a number of optional parameters, any number of which may
be specified. If a parameter is specified more than once, the last value specified
is used.
If a PDF-417 barcode’s parameter’s cause an error that would cause it not to
print, a detailed error message will be displayed instead.
There is no option to use structured append PDF-417 barcodes in CPCL.

Swift (iOS)

public func cpclBarcodeMaxicode(xPos xPos: Int, yPos: Int, field: Int,

barcodeMaxicode: String)

public func cpclBarcodePDF417(xPos xPos: Int, yPos: Int, XDot: Int,

YDot: Int, columes: Int, rows: Int, ecc: Int, binaryModel: Int)

public func cpclBarcodePDF417Vertical(xPos xPos: Int, yPos: Int, XDot:

Int, YDot: Int, columes: Int, rows: Int, ecc: Int, binaryModel: Int)

public func cpclBarcodePDF417Data(pdf417Data: String)

public func cpclBarcodePDF417End()

Parameter Type Description
Valid
Range

X
5 Digit Unit
Number

The X position where the
barcode begins

0 to 65535
units

Y
5 Digit Unit
Number

The Y position where the
barcode begins

0 to 65535
units

XDot 5 Digit Number
The X size of a single element in
dots

0 to 65535

YDot 5 Digit Number
The Y size of a single element in
dots

0 to 65535

Columns 5 Digit Number
Specifies the number of
columns to use.

1 to 30

Rows 5 Digit Number
Specifies the number of rows to
use.

0 to 90

ECC 5 Digit Number
Specifies the error recovery
level.

1 to 8

BinaryMode Single Digit Force binary compaction mode 0 or 1

Data Raw String
The data to be encoded in the
barcode.

See below.

Parameter

Sample Code (Swift)

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 210, quantity: 1)

cpclCenter()

cpclBarcodePDF417(xPos: 10, yPos: 20, XDot: 3, YDot: 6, columes: 3,

rows: 3, ecc: 2, binaryModel: 1)

cpclBarcodePDF417Data("pdf-417 data")

cpclBarcodePDF417End()

cpclText(rotate: 0, font: 1, fontSize: 0, x: 10, y: 120, text: "pdf

data")

cpclText(rotate: 0, font: 1, fontSize: 0, x: 10, y: 160, text:

"abcde123456")

cpclPrint()

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 400, quantity: 1)

cpclBarcodePDF417Vertical(xPos: 30, yPos: 400, XDot: 3, YDot: 6,

columes: 3, rows: 3, ecc: 3, binaryModel: 1)

cpclBarcodePDF417Data("pdf data vertical")

cpclBarcodePDF417End()

1.2.6 QR Code

Function

The BARCODE QR command is used to print QR Code barcodes in the CPCL
language.
VBARCODE QR is identical to BARCODE, except it is oriented vertically.
Note that this command has optional parameters M, U. In order to use these
parameters, the M or U character must be followed by a space, then a number
which complies with the table below.

Swift (iOS)

Parameter Type Description Valid Range

X
5 Digit Unit
Number

The X position where the
barcode begins

0 to 65535
units

Y
5 Digit Unit
Number

The Y position where the
barcode begins

0 to 65535
units

Model 5 Digit Number The ratio of wide to narrow bars. 1 or 2

Width 5 Digit Number
Unit-width of the barcode in
dots

0 to 65535
dots

Config Raw String
Configuration options for
barcode

See Below.

Data Raw String Data for barcode See Below.

Parameter

cpclText(rotate: 90, font: 1, fontSize: 0, x: 120, y: 400, text: "pdf

data")

cpclText(rotate: 90, font: 1, fontSize: 0, x: 170, y: 400, text:

"abcde123456")

cpclPrint()

public func cpclBarcodeQRcode(xPos xPos: Int, yPos: Int, model: Int,

unitWidth: Int)

public func cpclBarcodeQRcodeVertical(xPos xPos: Int, yPos: Int,

model: Int, unitWidth: Int, config: Int, barcodeQRcode: String)

public func cpclBarcodeQRcodeData(barcodeQRcode: String, config:

String)

public func cpclBarcodeQRcodeEnd()

Sample Code (Swift)

1.3 Barcode Text

Function

BARCODE-TEXT is used to specify if a human-readable text representation of

barcode data should be printed below 1D barcodes. This text is applied for both line-
print and label-based barcodes.

Swift (iOS)

Parameter Type Description Range

FontNameOrNumber
Space-Terminated
String

A font name or number to create the
representation

See
Below.

FontSize 3 Digit Number The size of the font.
0 to
999

Offset
3 Digit Unit
Number

How far in units the text is from the
barcode

0 to
999

Parameter

Pre-scaled Font Syntax

Alternate Syntax – TTF Font Syntax

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 500, quantity: 1)

cpclBarcodeQRcode(xPos: 50, yPos: 50, model: 2, unitWidth: 5)

cpclBarcodeQRcodeData("AQR code ABC123,N9876", config: "MM")

cpclBarcodeQRcodeEnd()

cpclPrint()

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 210, quantity: 1)

cpclBarcodeQRcode(xPos: 50, yPos: 50, model: 2, unitWidth: 10)

cpclBarcodeQRcodeData("AQR code ABC123,N9876", config: "MM")

cpclBarcodeQRcodeEnd()

cpclPrint()

// print annotation text line

public func cpclBarcodeText(font font: Int, fontSize: Int, offset:

Int)

public func cpclBarcodeText(trueTypeFont trueTypeFont: Int, xScale:

Int, yScale: Int, offset: Int)

// close annotation text line

public func cpclBarcodeTextOff()

Parameter Type Description Range

TrueTypeFontName
Space-Terminated
String

The filename of the TTF font with
extension

See
Below.

XScale 3 Digit Number The X size of the font, in dots.
0 to
999

YScale 3 Digit Number The Y size of the font, in dots
0 to
999

Offset
3 Digit Unit
Number

How far in units the text is from
the barcode

0 to
999

Sample Code (Swift)

1.4 Bat-Indicator

Function

BAT-INDICATOR is used to print a graphical representation of the current charge

state of the battery on a label.The BAT-INDICATOR command takes a series of

optional parameters to specify its size and configuration.

Swift (iOS)

Parameter Type Description Valid Range

X 5 Digit Unit Number The X origin of the graphic. 0 to 65535

Y 5 Digit Unit Number The Y origin of the graphic. 0 to 65535

Parameter

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 400, quantity: 1)

cpclCenter()

cpclBarcodeText(font: 4, fontSize: 0, offset: 10)

cpclBarcode(type: CPCLBarcodeType.Code128.rawValue, width: 1, ratio:

1, height: 50, x: 0, y: 20, barcode: "barcode data")

cpclBarcodeVertical(type: "128", width: 1, ratio: 1, height: 50, x: 0,

y: 390, barcode: "barcode data")

cpclBarcodeTextOff()

cpclPrint()

public func cpclBatIndicator(xPos xPos: String, yPos: String)

Sample Code

1.5 Box

Function

The BOX command is used to draw a box.By default, BOX draws a box in solid

black, but the pattern used to fill the box can be changed with the PATTERN

command.The BOX command can be used with the justify commands CENTER ,

LEFT and RIGHT to align the box.

Swift (iOS)

Parameter Type Description
Valid
Range

X
5 Digit Unit
Number

The X origin of the box. 0 to 65535

Y
5 Digit Unit
Number

The Y origin of the box. 0 to 65535

EndX
5 Digit Unit
Number

The X coordinate where the box
ends.

0 to 65535

EndY
5 Digit Unit
Number

The Y coordinate where the box
ends.

0 to 65535

Thickness
5 Digit Unit
Number

The thickness of the lines in the
box.

0 to 65535

Parameter

Sample Code

public func cpclBox(xPos xPos: Int, yPos: Int, xEnd: Int, yEnd: Int,

thickness: Int)

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 210, quantity: 1)

cpclBox(xPos: 0, yPos: 0, xEnd: 200, yEnd: 200, thickness: 1)

cpclPrint()

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 210, quantity: 1)

cpclBox(xPos: 0, yPos: 0, xEnd: 200, yEnd: 200, thickness: 2)

cpclPrint()

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 210, quantity: 1)

cpclBox(xPos: 0, yPos: 0, xEnd: 200, yEnd: 200, thickness: 3)

cpclPrint()

1.6 CompressedGraphics

Function

The COMPRESSED-GRAPHICS command is used to print raw binary bitmap data to

the label. COMPRESSED-GRAPHICS is the same except it is oriented vertically. The

data itself is not compressed per say, it is just more efficiently represented than in
the EXPANDED- GRAPHICS command. The binary data is not compressed in this

command.

Swift (iOS)

Parameter Type Description
Valid
Range

ByteWidth
3 Digit
Number

The byte width of the image being
transmitted.

0 to 999

Height
5 Digit Unit
Number

The height of the data to follow in
units.

0 to
65535

X
5 Digit Unit
Number

The X origin of the graphic.
0 to
65535

Y
5 Digit Unit
Number

The Y origin of the graphic.
0 to
65535

Data Raw String
The data that makes up the bitmap
to be printed.

See
below.

Parameter

Sample Code

1.7 Concat

Function

public func cpclCompressedGraphics(imageWidth imageWidth: Int,

imageHeight: Int, x: Int, y: Int, bitmapData: NSData)

public func cpclCompressedGraphicsVertical(byteWidth byteWidth: Int,

height: Int, x: Int, y: Int, bitmapData: NSData)

The CONCAT command is used to concatenate multiple fonts and sizes of text on to
a single line, and to align their top-lines in a specific way. The command starts with a
CONCAT command, followed by one or more sub-commands. Each sub-command
adds more text onto the concatenation from left to right.

Swift (iOS)

Parameter

Parameter Type Description
Valid
Range

X
5 Digit Unit
Number

The X origin of the text
string.

0 to 65535

Y
5 Digit Unit
Number

The Y origin of the text
string.

0 to 65535

Master Syntax

Parameter Type Description Valid Range

FontNameOrNumber
Space-Terminated
String

A font name or number to create
the text.

See Below.

FontSize 5 Digit Number The size of the pre-scaled font. 0 to 65535

Offset
5 Digit Unit
Number

How far from Y is the top of this
text?

0 to 65535

Data
CR-LF Terminated
String

The text data to be concatenated.
Up to 2024
characters1

FontNameOrNumber

// Concat Begin (Master Syntax)

public func cpclConcatStart(xPos xPos: Int, yPos: Int)

public func cpclConcatVerticalStart(xPos xPos: Int, yPos: Int)

// FontNameOrNumber

public func cpclConcatText(font font: Int, fontSize: Int, offset: Int,

text: String)

// Sub-Command – Scale-Text

public func cpclConcatScaleText(scaledFont scaledFont: Int, xScale:

Int, yScale: Int, offset: Int, text: String)

public func cpclConcatScaleTextVertical(scaledFont scaledFont: Int,

xScale: Int, yScale: Int, offset: Int, text: String)

// Sub-command – Font-Group

public func cpclConcatText(fontGroup fontGroup: Int, offset: Int,

text: String)

// Concat End

public func cpclConcatEnd()

Parameter Type Description Valid Range

ScaledFontName
Space-Terminated
String

A scaled font used to create
the text.

See Below.

XPoints 5 Digit Number
The X size of the scaled font,
in points.

0 to 65535

YPoints 5 Digit Number
The Y size of the scaled font,
in points.

0 to 65535

Offset
5 Digit Unit
Number

How far from Y is the top of
this text?

0 to 65535

Data
CR-LF Terminated
String

The text data to be
concatenated.

Up to 2024
characters1

Sub-Command – Scale-Text

Parameter Type Description Valid Range

FontGroupNumber
Space-Terminated
String

The number of the font-group
to use

0 to 10

Offset 5 Digit Unit Number
How far from Y is the top of this
text?

0 to 65535

Data
CR-LF Terminated
String

The text data to be
concatenated.

Up to 2024
characters1

Sub-command – Font-Group

Sample Code (Swift)

1.8 Count

Function

The COUNT command is used to increment or decrement a field on a label

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 210, quantity: 1)

cpclText(rotate: 0, font: 0, fontSize: 2, x: 0, y: 0, text: "concat

command")

cpclConcatStart(xPos: 0, yPos: 90)

cpclConcatText(font: 4, fontSize: 0, offset: 10, text: "$")

cpclConcatText(font: 4, fontSize: 1, offset: 20, text: "12")

cpclConcatText(font: 1, fontSize: 2, offset: 30, text: "34")

cpclConcatText(font: 8, fontSize: 0, offset: 60, text: "Hello")

cpclConcatText(font: 9, fontSize: 1, offset: 90, text: "World")

cpclConcatEnd()

cpclPrint()

when the labels are printed in a batch, that is with a quantity greater than one
on in the label session definition.
COUNT fields are not cleared at the start of each new label session. If you try to
use COUNT on an unsupported field, or use COUNT without a field, and you
previously adjusted a field successfully, the old field definition will be used for
the second label and on in the batch (adjusts don’t take effect until the second
label)
No more than 30 COUNT commands can appear in a single label session. Any
beyond this amount will have no effect.

Swift (iOS)

Parameter Type Description Valid Range

Adjust
Terminated
String

The amount to adjust
the field.

Up to 20 ASCII digits,
signed

Parameter

Sample Code

1.9 End/Print

Function

PRINT , and its alias END is used to terminate a CPCL label session, and create

the resulting print out.
Every CPCL label session must be terminated with a PRINT command.

//

public func cpclCount(adjust: Int)

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 210, quantity: 3)

cpclAnnotation("Print 3 labels")

cpclCenter()

cpclText(rotate: 0, font: 4, fontSize: 0, x: 0, y: 50, text: "testing

001")

cpclCount(1) //

cpclText(rotate: 0, font: 4, fontSize: 0, x: 0, y: 100, text: "barcode

value is 123456789")

cpclCount(-10)

cpclBarcode(type: CPCLBarcodeType.Code128.rawValue, width: 1, ratio:

1, height: 50, x: 0, y: 150, barcode: "{A123456789")

cpclCount(-10)

cpclPrint()

Every example for this section uses the PRINT command to terminate labels.

Swift (iOS)

Sample Code (Swift)

1.10 ExpandedGraphics

Function

The EXPANDED-GRAPHICS command is used to print ASCII encoded bitmap

data to the label.

EXPANDED-GRAPHICS is the same except it is oriented vertically.

Unless the communication method does not permit the use of binary data,
graphical data is more efficiently represented by using the COMPRESSED-

GRAPHICS command.

Swift (iOS)

Parameter

 // End Print

 public func cpclPrint()

 public func cpclEnd()

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 210, quantity: 1)

cpclCenter()

cpclText(rotate: 0, font: 4, fontSize: 0, x: 10, y: 0, text: "This is

a ! command.")

cpclPrint()

public func cpclExpandedGraphics(byteWidth byteWidth: Int, height:

Int, xPos: Int, yPos: Int, bitmapData: NSData)

public func cpclExpandedGraphicsVertical(byteWidth byteWidth: Int,

height: Int, xPos: Int, yPos: Int, bitmapData: NSData)

Parameter Type Description
Valid
Range

ByteWidth
3 Digit
Number

The byte width of the image being
transmitted.

0 to 999

Height
5 Digit
Number

The height of the data to follow in units.
0 to
65535

X
5 Digit
Number

The X origin of the graphic.
0 to
65535

Y
5 Digit
Number

The Y origin of the graphic.
0 to
65535

Data Raw String
The data that makes up the bitmap to
be printed.

See
below.

Sample Code

1.11 FontGroup

Function

FONT-GROUP is used to define groups of pre-scaled fonts which can be used to

for automatic font size calculation when used with various text commands in
CPCL.
Up to a total of 10 font groups can be defined, numbering from 0 to 9. Each
FONT-GROUP command defines a single font group, which an in turn contain up

to 10 pairs of font name or number and size values. These values are repeated
as many times as desired in the FONT-GROUP command before being CR-LF
terminated. At least one pair must be specified to define the group, though two
or more is recommended.
When a text command using a font group is used, the printer will automatically
select a font from the font group which allows the text to fit in the area from the
X and Y coordinates specified in the text command to the edge of the label area
as defined by the PAGE-WIDTH command.

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 210, quantity: 1)

let data =

cpclEncodeText("F0F0F0F0F0F0F0F00F0F0F0F0F0F0F0FF0F0F0F0F0F0F0F00F0F0F

0F0F0F0F0F")

cpclExpandedGraphics(byteWidth: 2, height: 16, xPos: 45, yPos: 45,

bitmapData: data)

cpclPrint()

In order to make the text fit, the printer can not only select any of the fonts, but
can change the spacing of the font, decreasing the space between characters to
attempt to make it fit. If, even after decreasing the spacing to a minimal
amount, the text will not fit, the text command is aborted and no text is printed
all for that text command.
Font groups are supported in the TEXT and CONCAT commands in CPCL. Font

groups do work with the MULTILINE command, however only one member of
the font group is selected for the entire MULTI-LINE set, based on the font size

needed for the widest line of text in the MULTI-LINE group.
Once defined in a label or utilities session, a font group remains defined until
power is cycled. By default at power on, no font groups are defined.

Swift (iOS)

Parameter Type Description
Valid
Range

Group 5 Digit Number Specifies the group number to define 0 to 9

FontNameOrNumber
Space-Terminated
String

A font name or number to create the
representation

See
Below.

FontSize 5 Digit Number The size of the font.
0 to
65535

Parameter

Sample Code

1.12 Image

Function

IMAGE is used to change the drawing method of pre-scaled text commands

and LINE commands.

By default, image data drawn to a label ORed with existing label data, that is if
there is already a black dot at the location being drawn to, the dot will continue
to appear black.
By using the IMAGE command, you can change this behavior to XOR new
drawing with existing label data, which means that if there is an existing black
dot at the location being drawn to, the dot will be erased and replaced with a
white dot.
IMAGE is persistent between labels, with the most recent setting in either a label
or utilities session taking precedence. It can be changed as many times as
needed per label.

public func cpclFontGroup(group: Int, font: Int, size: Int)

Swift (iOS)

Parameter Type Description
Valid
Range

Mode
CR-LF Terminated
String

Specifies the drawing
mode

OR or XOR

Parameter

Sample Code

1.13 Centimeters, Dots, Inches, Millimeters

Function

The various IN- commands change the system of measurement for all
parameters in CPCL which are identified as unit numbers to centimeters. At the
beginning of each new label, the system is reset to dots (the equivalent of the
IN-DOTS command).
If any of these commands are the very first one in a label session, the session
definition’s height parameter is re-evaluated in the new system of
measurement. Otherwise the command only affects subsequent fields in the
label session.
You can change the system of measurement as many times as necessary per
label.

Swift (iOS)

Requested Unit Conversion Factor to Dots

Dots (Default) 1

Centimeters 80

Millimeters 8

Inches 203.2

Parameter

public func cpclImageMode(mode: String)

public func cpclInCentimeters()

public func cpclInDots()

public func cpclInChes()

public func cpclInMillimeters()

Sample Code (Swift)

1.14 Inverse Line

Function

The INVERSE-LINE command is used to draw a line which inverts the label

area over which it is drawn.
LINE has two modes of operation based on whether or not one side of the line
is flat.
If the line is straight (X and EndX are the same or Y and EndY are the same), you
can align the line using the CENTER , LEFT and RIGHT commands.

If the line is diagonal, it cannot be aligned or filled.

Swift (iOS)

Parameter

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 210, quantity: 1)

cpclInChes()

cpclOnFeed_Feed()

cpclPrint()

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 240, quantity: 1)

cpclInDots()

cpclOnFeed_Feed()

cpclPrint()

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 4, quantity: 1)

cpclInCentimeters()

cpclOnFeed_Feed()

cpclPrint()

public func cpclInverseLine(xPos xPos: Int, yPos: Int, xEnd: Int,

yEnd: Int, thickness: Int)

public func cpclReverseLine(xPos xPos: Int, yPos: Int, xEnd: Int,

yEnd: Int, thickness: Int)

Parameter Type Description
Valid
Range

X
5 Digit Unit
Number

The X origin of the line. 0 to 65535

Y
5 Digit Unit
Number

The Y origin of the line. 0 to 65535

EndX
5 Digit Unit
Number

The X coordinate where the line
ends.

0 to 65535

EndY
5 Digit Unit
Number

The Y coordinate where the line
ends.

0 to 65535

Thickness
5 Digit Unit
Number

The thickness of the line. 0 to 65535

Sample Code

1.15 Left, Center, Right

Function

The LEFT command is used to change the justification of supported fields. It is
part of a series of justification commands which includes LEFT , CENTER and

RIGHT .

LEFT is the default justification for labels. Each time a new label session is
started, it is set to LEFT alignment (specifically LEFT 0). Once used, LEFT is
persistent within the label session.

Swift (iOS)

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 210, quantity: 1)

cpclCenter()

cpclText(rotate: 0, font: 4, fontSize: 0, x: 0, y: 45, text: "save")

cpclText(rotate: 0, font: 4, fontSize: 0, x: 0, y: 95, text: "more")

cpclText(rotate: 0, font: 4, fontSize: 0, x: 0, y: 145, text: "more")

cpclInverseLine(xPos: 0, yPos: 45, xEnd: 145, yEnd: 45, thickness: 45)

cpclInverseLine(xPos: 0, yPos: 95, xEnd: 145, yEnd: 95, thickness: 45)

cpclInverseLine(xPos: 0, yPos: 145, xEnd: 145, yEnd: 145, thickness:

45)

cpclPrint()

Parameter Type Description
Valid
Range

Range
5 Digit Unit
Number

Sets FONT-GROUP field

width.
0 to 65535

Parameter

BARCODE (all 1D
types)

BARCODE MAXICODE BOX

CONCAT
INVERSE-LINE,
REVERSE-LINE

LINE

PCX, PCX90,
PCX180, PCX270

PCXMAG SCALE-TEXT

SCALE-TO-FIT
TEXT, TEXT90,
TEXT180, TEXT270

COMPRESSED-GRAPHICS,
EXPANDED- GRAPHICS

Mark

The following commands support justification

Sample Code (Swift)

public func cpclLeft(range: Int)

public func cpclLeft()

public func cpclCenterWithRange(range: Int)

public func cpclCenter()

public func cpclRight(range: Int)

public func cpclRight()

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 500, quantity: 1)

cpclCenter()

cpclText(rotate: 0, font: 4, fontSize: 0, x: 0, y: 0, text: "center")

cpclLeft()

cpclText(rotate: 0, font: 4, fontSize: 0, x: 0, y: 50, text: "left")

cpclRight()

cpclText(rotate: 0, font: 4, fontSize: 0, x: 0, y: 100, text: "right")

cpclCenterWithRange(200)

cpclText(rotate: 0, font: 4, fontSize: 0, x: 0, y: 150, text: "center

200")

cpclRight(200)

cpclText(rotate: 0, font: 4, fontSize: 0, x: 0, y: 200, text: "right

200")

1.16 Line

Function

The LINE command is used to draw a line.

LINE has two modes of operation based on whether or not one side of the line
is flat.
If the line is straight (X and EndX are the same or Y and EndY are the same), you
can align the line using the CENTER, LEFT and RIGHT commands. You can also
use the PATTERN command to fill the line with a pattern. The PATTERN

command can be used to create white lines.
If the line is diagonal, it cannot be aligned or filled.

Swift (iOS)

Parameter Type Description
Valid
Range

X
5 Digit Unit
Number

The X origin of the line. 0 to 65535

Y
5 Digit Unit
Number

The Y origin of the line. 0 to 65535

EndX
5 Digit Unit
Number

The X coordinate where the line
ends.

0 to 65535

EndY
5 Digit Unit
Number

The Y coordinate where the line
ends.

0 to 65535

Thickness
5 Digit Unit
Number

The thickness of the line. 0 to 65535

Parameter

Sample Code

cpclLeft()

cpclText(rotate: 0, font: 4, fontSize: 0, x: 0, y: 250, text: "left

200")

cpclPrint()

public func cpclLine(xPos xPos: Int, yPos: Int, xEnd: Int, yEnd: Int,

thickness: Int)

1.17 Move

Function

The MOVE command moves the origin of a label. The effect is most pronounced

when using a media that synchronizes to marks. It does affect continuous mode
labels, but the effects may be difficult to see, particularly with the MoveUp
parameter.

The values specified by MOVE are added to those specified by TEMP-MOVE to

determine the final position. Note that TEMP-MOVE and MOVE are both
negative aware. This means that if a MOVE 20 20 was in effect, and a TEMP-
MOVE -20 -20 was also in effect, the net location used would be 0,0.
The MOVE command is available in both label and utilities sessions and is
persistent between labels, but is reset when the printer is power cycled.

Swift (iOS)

Parameter Type Description
Valid
Range

MoveRight
5 Digit Unit
Number

How far to move the label to the
right.

0 to 65535

MoveUp
5 Digit Unit
Number

How far to move the label up. 0 to 65535

Parameter

Sample Code

1.18 Multi-Line

Function

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 210, quantity: 1)

cpclLine(xPos: 0, yPos: 0, xEnd: 200, yEnd: 0, thickness: 1)

cpclLine(xPos: 0, yPos: 0, xEnd: 200, yEnd: 200, thickness: 2)

cpclLine(xPos: 0, yPos: 0, xEnd: 0, yEnd: 200, thickness: 3)

cpclPrint()

public func cpclMove(right right: String, up: String)

The MULTILINE command is used to print a number of lines of text using the

same font without having to manually specify the spacing or positioning of each
line.
The basic format of the command is the MULTILINE command followed by
LineHeight and then a fully formed text command without its final parameter
which would specify the data to print, followed by a CR and LF.
After that, as many Data lines as necessary can be specified without limit. Each
field will be printed as if it was an individual text command, with the vertical
position increasing by LineHeight for each line.

Swift (iOS)

Parameter Type Description
Valid
Range

LineHeight
5 Digit Unit
Number

Spacing between each line in
units.

0 to
65535

TextCommand Command
A command specifying
formatting for the text.

See
Below.

Data
CR-LF
Terminated
String

A text line to print using the
formatting.

See
Below.

Parameter

Mark

the following text commands are supported for use with MULTILINE.

TEXT, TEXT90, TEXT180, TEXT270, VTEXT, T, T90,T180,T270, VT
SCALE-TO-FIT, VSCALE-TO-FIT, STF, VSTF
SCALE-TEXT, VSCALE-TEXT, ST, VST

Sample Code

public func cpclMultiLineStart(lineHeight lineHeight: Int)

...

public func cpclInsertTextLine(textLine: String)

...

public func cpclMultiLineEnd()

1.19 Page Width

Function

The PAGE-WIDTH command is used to specify the width a label session. The
height of the session is defined in the session header.
Some printers have built-in sensors to detect the width of the currently installed
media. If this sensor is installed and enabled, setting a PAGE-WIDTH of 0 will use
the detected media width for the label.
The PAGE-WIDTH command must either be used in a utilities session, or before
any command which creates output on the label is used. If used in a label
session, it should be the first command after the session line (or the second if
you are using a units command such as IN-CENTIMERES to modify the session
line).
It is not recommended to change PAGE-WIDTH once you have started drawing
to the label, as any fields drawn so far will become corrupted.

Swift (iOS)

Parameter Type Description
Valid
Range

Width
5 Digit Unit
Number

Spacing between each line in
units.

0 to 65535

Parameter

Sample Code (Swift)

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 228, quantity: 1)

cpclMultiLineStart(lineHeight: 40)

cpclText(rotate: 0, fontGroup: 1, x: 0, y: 0, text: "10")

cpclInsertTextLine("line 1")

cpclInsertTextLine("line 2")

cpclInsertTextLine("line 3")

cpclInsertTextLine("line 4")

cpclMultiLineEnd()

cpclPrint()

public func cpclPageWidth(width: Int)

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 210, quantity: 1)

cpclPageWidth(100)

cpclCenter()

1.20 Pattern

Function

The PATTERN command is used to change the fill patterns of the SCALE-TEXT

and SCALE-TO-FIT (when using CSF fonts only), some LINE commands (must

be horizontal or vertical lines), and all BOX commands.

By default and at the start of each label session, PATTERN is set to 100, which is
solid black. PATTERN is persistent within the same label session.
Lines or boxes drawn with PATTERN values besides 100 start and end one dot
higher than their pixel position indicates. This behavior does not occur with
SCALE-TEXT.

Swift (iOS)

cpclText(rotate: 0, font: 4, fontSize: 0, x: 10, y: 0, text: "This is

a ! command")

cpclPrint()

cpclUtilitySession()

cpclPageWidth(80)

cpclPrint()

cpclInsertTextLine("this text is printed with label money with set to

80 dots.")

cpclUtilitySession()

cpclPageWidth(150)

cpclPrint()

cpclInsertTextLine("this text is printed with label money with set to

150 dots.")

cpclUtilitySession()

cpclPageWidth(300)

cpclPrint()

cpclInsertTextLine("this text is printed with label money with set to

300 dots.")

cpclUtilitySession()

cpclPageWidth(400)

cpclPrint()

cpclInsertTextLine("this text is printed with label money with set to

400 dots.")

public func cpclPatternNumber(patternNumber: Int)

Parameter Type Description Valid Range

Pattern 5 Digit Number The pattern number to use 0 to 106

Parameter

Sample Code

1.21 PCX

Function

The PCX command is used to print a ZSoft PCX file.

The PCX file must be a 2-color, 1-plane RLE-encoded PCX file. If it is not,
command is aborted and the binary data of the PCX flows into the label data,
often causing the printer to enter an unpredictable state.
PCX supports the justification commands LEFT, RIGHT and CENTER, but if the
PCX is too wide to fit on the current label (as determined with PAGE-WIDTH), no

image will be printed at all. This does not occur if the image is too tall – it will be
properly clipped in this case.
The origins of the rotated versions of the PCX commands (PCX90 , PCX180 and

PCX270) do not use the same math for their origins as TEXT and other

commands do. See the example for more details.

Swift (iOS)

Parameter Type Description
Valid
Range

X
5 Digit Unit
Number

The X origin of the PCX. 0 to 65535

Y
5 Digit Unit
Number

The Y origin of the PCX. 0 to 65535

Data Raw String
Binary data containing the PCX
file

See below.

Parameter

Sample Code

public func cpclPCX(rotation rotation: Int, xPos: Int, yPos: Int,

bitmapData: NSData)

1.22 PCXMAG

Function

The PCXMAG command is used to print a ZSoft PCX file that has been magnified

vertically and horizontally.
The requirements for the PCX file itself are identical to the PCX command. The

only difference between this command and PCX is the addition of the
magnification parameters.
PCXMAG supports the justification commands LEFT, RIGHT and CENTER. Unlike
with PCX, if the image flows off the right side of the page, it does not wrap, the
remainder of the image data is disposed of.
If the unscaled image is too wide to fit on the page (as defined by page width),
no image will be printed.
The use of alignment commands (RIGHT and CENTER) with PCXMAG is not
supported.

Swift (iOS)

Parameter Type Description
Valid
Range

X
5 Digit Unit
Number

The X origin of the PCX. 0 to 65535

Y
5 Digit Unit
Number

The Y origin of the PCX. 0 to 65535

XMag
5 Digit Unit
Number

The X magnification factor of the
PCX

0 to 65535

YMag
5 Digit Unit
Number

The Y magnification factor of the
PCX

0 to 65535

Data Raw String
Binary data containing the PCX
file

See below.

Parameter

Sample Code

1.23 Persist

Function

public func cpclPCXMAG(xPos xPos: Int, yPos: Int, XMag: Int, YMag:

Int, bitmapData: NSData)

PERSIST is used to determine if label memory is erased at the end of each label
session. By default, when a label session ends, the label memory is cleared. This
option can be changed so that the image of the last label is retained and
merged with any subsequent label commands.

The setting is preserved between label sessions, but is always set to OFF at
startup.

Swift (iOS)

Parameter Type Description
Valid
Range

Option
Terminated
String

When set to ON, label images
persist

ON or OFF

Parameter

Sample Code

1.24 Rotate

Function

The ROTATE command is used to specify the rotation of a scalable or TrueType

font within the printer.
ROTATE can also be used with any of these commands when they are part of a
MULTI-LINE session, but not within the MULTI-LINE session itself.

For all of these commands, if the rotated text extends off the top or right edge
of the label, the text will be truncated, and the final character on the line may
not be fully formed. In the left and bottom direction, a fully formed partial
character will be printed instead.
SCALE-TO-FIT and CONCAT does not support use of the ROTATE command

with TrueType fonts.

Swift (iOS)

Parameter

public func cpclPersist(option: String)

public func cpclRotate(degrees: Int)

Parameter Type Description
Valid
Range

Degrees
5 Digit
Number

The number of degrees to rotate
counter-clockwise

0 to
65535

Mark

The following commands support rotation

CONCAT, VCONCAT
SCALE-TEXT, VSCALE-TEXT
SCALE-TO-FIT, VSCALE-TO-FIT

Sample Code

1.25 Scale Text

Function

The SCALE-TEXT command is used print scaled text in CPCL from either a

scaled or TrueType font.
VSCALE-TEXT has the same functionality, but orients the text rotated 90

degrees.
When the text generated by SCALE-TEXT flows off the edge of the page, it does
not wrap. On the top edge it is truncated to the nearest character that will fully
fit (when using VSCALE-TEXT). On the right edge, it is truncated to at the last
pixel of the page width, including any partial characters.

Swift (iOS)

Parameter

public func cpclScaleText(scaledFont: String, xScale: Int, yScale:

Int, x: Int, y: Int, text:String)

public func cpclScaleTextVertical(scaledFont: String, xScale: Int,

yScale: Int, x: Int, y: Int, text:String)

Parameter Type Description Valid Range

ScaledFontName
Space-Terminated
String

A scaled font used to create
the text.

See Below.

XPoints 5 Digit Number
The X size of the scaled font,
in points.

0 to 65535

YPoints 5 Digit Number
The Y size of the scaled font,
in points.

0 to 65535

X
5 Digit Unit
Number

The X origin of the scaled
text in units.

0 to 65535

Y
5 Digit Unit
Number

The Y origin of the scaled
text in units.

0 to 65535

Data
CR-LF Terminated
String

The text data to be printed.
Up to 8191
characters.

Sample Code

1.26 Scale To Fit

Function

The SCALE-TO-FIT command is used print scaled text which is to fit within a

particular bounding box in CPCL. The command is similar in syntax to the
SCALE-TEXT command, but the difference is that the sizing parameters XScale

and YScale are now replaced with Width and Height. The font’s vertical and
horizontal size will be selected to fit within the box specified.
SCALE-TO-FIT can be used with TrueType or scaled fonts.

VSCALE-TO-FIT has the same functionality, but orients the text rotated 90

degrees.
Because SCALE-TO-FIT can only contain a single line of text, the height of the

output text is always Height.

Swift (iOS)

Parameter

public func cpclScaleToFit(scaleFont: String, width: Int, height: Int,

x: Int, y: Int, text: String)

Parameter Type Description Valid Range

ScaledFontName
Space-
Terminated
String

A scaled font used to create
the text.

See Below.

Width
5 Digit Unit
Number

The width of the box to
contain the text.

0 to 65535

Height
5 Digit Unit
Number

The height of the box to
contain the text.

0 to 65535

X
5 Digit Unit
Number

The X origin of the scaled text
in units.

0 to 65535

Y
5 Digit Unit
Number

The Y origin of the scaled text
in units.

0 to 65535

Data
CR-LF
Terminated
String

The text data to be printed.
Up to 8191
characters.

Sample Code

1.27 Set Bold

Function

SET BOLD is used to add a faux bolding effect to pre-scaled fonts in CPCL. It

accomplishes this by redrawing the text one or more times, shifting one pixel to
the right side of the page each time. The spacing of the characters does not
change as a result of the bolding.
The number of shifts and writes is specified by the Boldness parameter.
The command affects any pre-scaled text drawing in CPCL, no matter what
command it comes from.

Swift (iOS)

Parameter Type Description
Valid
Range

Boldness
3-digit Unit
Number

Sets the boldness of the
text.

0 to 999

Parameter

Sample Code (Swift)

public func cpclSetBold(boldness: Int)

1.28 Set Mag

Function

SETMAG is used to set the output scaling of pre-scaled fonts, overriding the

sizing behaviors defined in the font files themselves. When a non-zero value for
SETMAG is used, that value replaces that element in the sizing of all pre-scaled
fonts, regardless of what command is used to draw them.
SETMAG’s value is preserved between labels, and also shared with line print
mode.

Swift (iOS)

Parameter Type Description
Valid
Range

Width
3-digit
Number

Sets the width multiplier of the
font.

0 to 16

Height
3-digit
Number

Sets the height multiplier of the
font.

0 to 127

Parameter

Sample Code

cpclLineMode()

cpclSetBold(5)

cpclInsertTextLine("this text is in bold 5")

cpclLineMode()

cpclSetBold(0)

cpclInsertTextLine("this text is in bold 0")

public func cpclSetMag(width width: Int, height: Int)

1.29 Set Spacing

Function

SETSP is used to set the horizontal spacing between characters. The command

adjusts the spacing of both pre-scaled and scaled fonts. The command can only
increase the spacing between characters, it cannot decrease it.
If the spacing is large enough, this may cause the text to flow off the edge of the
page. In this case, what happens to the extra text is a function of the underlying
command used to print the text (i.e. wraps with TEXT, is truncated with SCALE-

TEXT).

SETSP is not supported for TrueType fonts.
SETSP is reset at the start of each label to 0 for pre-scaled fonts. It is not reset
for scaled fonts.

Swift (iOS)

Parameter Type Description
Valid
Range

Spacing
3-digit Unit
Number

Sets the spacing between
characters of a font

See
Below.

Parameter

Sample Code (Swift)

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 500, quantity: 1)

cpclText(rotate: 0, font: 0, fontSize: 0, x: 0, y: 0, text: "Text")

cpclText(rotate: 0, font: 0, fontSize: 1, x: 0, y: 30, text: "T90")

cpclText(rotate: 0, font: 0, fontSize: 2, x: 0, y: 90, text: "T180")

cpclText(rotate: 0, font: 0, fontSize: 3, x: 0, y: 120, text: "T270")

cpclSetMag(width: 2, height: 2)

cpclText(rotate: 0, font: 0, fontSize: 0, x: 0, y: 180, text: "text")

cpclText(rotate:

0, font: 0, fontSize: 1, x: 0, y: 250, text: "T90")

cpclText(rotate: 0, font: 0, fontSize: 2, x: 0, y: 330, text: "T180")

cpclText(rotate: 0, font: 0, fontSize: 3, x: 0, y: 400, text: "T270")

cpclPrint()

public func cpclSetSpacing(spacing: Int)

1.30 Temp Move

Function

The TEMP-MOVE command moves the origin of the next or current label

session. The effect is most pronounced when using a media that synchronizes
to marks. It does affect continuous mode labels, but the effects may be difficult
to see, particularly with the MoveUp parameter.
The TEMP-MOVE command is available in both label and utilities sessions, and
only applies to the next or current label session. After the session ends, TEMP-
MOVE is reset to zero.
The values specified by TEMP-MOVE are added to those specified by MOVE to

determine the final position. Note that TEMP-MOVE and MOVE are both
negative aware. This means that if a MOVE 20 20 was in effect, and a TEMP-
MOVE -20 -20 was also in effect, the net location used would be 0,0.
Syntax and functionality wise, TEMP-MOVE is identical to MOVE.

Swift (iOS)

Parameter

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 300, quantity: 1)

cpclText(rotate: 0, font: 4, fontSize: 0, x: 0, y: 10, text: "normal

spacing")

cpclSetSpacing(1)

cpclText(rotate: 0, font: 4, fontSize: 0, x: 0, y: 50, text: "normal

spacing 1")

cpclSetSpacing(2)

cpclText(rotate: 0, font: 4, fontSize: 0, x: 0, y: 80, text: "normal

spacing 2")

cpclSetSpacing(3)

cpclText(rotate: 0, font: 4, fontSize: 0, x: 0, y: 110, text: "normal

spacing 3")

cpclSetSpacing(4)

cpclText(rotate: 0, font: 4, fontSize: 0, x: 0, y: 140, text: "normal

spacing 4")

cpclSetSpacing(10)

cpclText(rotate: 0, font: 4, fontSize: 0, x: 0, y: 170, text: "normal

spacing 10")

cpclPrint()

public func cpclTempMove(right: Int, up: Int)

Parameter Type Description
Valid
Range

MoveRight
5 Digit Unit
Number

How far to move the label to the
right.

0 to 65535

MoveUp
5 Digit Unit
Number

How far to move the label up. 0 to 65535

Sample Code

1.31 Text

Function

The TEXT command is used to print text in CPCL. The command can be used

with both pre-scaled and TrueType fonts, but not with scalable fonts (use
SCALE-TEXT for these instead). The TEXT command can also be used to print

using font groups.
There are three syntaxes to the command. The first is for pre-scaled fonts, the
second for TrueType fonts, and the third is for font group.
The alignment commands CENTER, LEFT and RIGHT are supported for all forms
of the TEXT command.

Swift (iOS)

Parameter

Pre-scaled Font Syntax

// Pre-scaled Font Syntax

public func cpclText(rotate rotate: Int, font: Int, fontSize: Int, x:

Int, y: Int, text: String)

// Alternate Syntax -TTF Font Syntax

public func cpclText(rotate rotate: Int, trueTypeFont: Int, xScale:

Int, yScale: Int, x: Int, y: Int, text: String)

// Alternate Syntax -Font-Group

public func cpclText(rotate rotate: Int, fontGroup: Int, x: Int, y:

Int, text: String)

Parameter Type Description Valid Range

FontNameOrNumber
Space-
Terminated
String

A font name or number to create the
representation

See Below.

FontSize 5 Digit Number The size of the font. 0 to 65535

X
5 Digit Unit
Number

The X origin of the text in units. 0 to 65535

Y
5 Digit Unit
Number

The Y origin of the text in units. 0 to 65535

Data
CR-LF
Terminated
String

The text data to be printed.
Up to 8191
characters

Parameter Type Description Valid Range

TrueTypeFontName
Space-
Terminated
String

The filename of the TTF font
with extension

See Below.

XScale 5 Digit Number The X size of the font, in dots. 10 to 1450

YScale 5 Digit Number The Y size of the font, in dots 10 to 1450

X
5 Digit Unit
Number

The X origin of the text in units. 0 to 65535

Y
5 Digit Unit
Number

The Y origin of the text in units. 0 to 65535

Data
CR-LF
Terminated
String

The text data to be printed.
Up to 8191
characters

Alternate Syntax – TTF Font Syntax

Parameter Type Description Valid Range

FontGroupNumber
Space-Terminated
String

The number of the font-
group to use

0 to 10

X
5 Digit Unit
Number

The X origin of the text in
units.

0 to 65535

Y
5 Digit Unit
Number

The Y origin of the text in
units.

0 to 65535

Data
CR-LF Terminated
String

The text data to be printed.
Up to 8191
characters

Alternate Syntax – Font-Group

Sample Code (Swift)

1.32 Page Type

Function

This is an instruction to set the type of printer paper. It includes six options:
continuous paper, label paper, back black label, front black label, 3 inch black
label and 2 inch black label

OC(iOS)

Parameter Type Description Valid Range

type 5 Digit Unit Number The type of page 0-5

Parameter

Sample Code

1.33 Background

Function

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 210, quantity: 1)

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 200, quantity: 1)

cpclText(rotate: 0, font: 4, fontSize: 0, x: 200, y: 100, text:

"Text")

cpclText(rotate: 90, font: 4, fontSize: 0, x: 200, y: 100, text:

"T90")

cpclText(rotate: 180, font: 4, fontSize: 0, x: 200, y: 100, text:

"T180")

cpclText(rotate: 270, font: 4, fontSize: 0, x: 200, y: 100, text:

"T270")

cpclPrint()

- (void)cpclPaperTypeWithType:(NSInteger)type;

PTCommandCPCL *cmd = [[PTCommandCPCL alloc] init];

[cmd cpclPaperTypeWithType:0];

Set the blackness of the printing of background text. When the parameter is 0, the
printing is normal black; when the parameter is 1, the background text with the
lightest black degree is printed; when the parameter is 255, the background text with
the largest black degree is printed

OC(iOS)

Parameter Type Description Valid Range

value 5 Digit Unit Number Blackness values 0-255

Parameter

Sample Code

- (void)cpclSetBackground:(NSInteger)value;

PTCommandCPCL *cmd = [[PTCommandCPCL alloc] init];

 [cmd cpclLabelWithOffset:0 hRes:200 vRes:200 height:800

quantity:1];

 [cmd cpclPageWidth:576];

 [cmd cpclCenter];

 [cmd cpclSetMagWithWidth:2 height:2];

 [cmd cpclTextWithRotate:0 font:24 fontSize:0 x:0 y:50 text:@"Print

background text with a black color of 50"];

 [cmd cpclTextWithRotate:0 font:24 fontSize:0 x:0 y:250

text:@"Print background text with a black color of 150"];

 [cmd cpclTextWithRotate:0 font:24 fontSize:0 x:0 y:450

text:@"Print background text with a black color of 200"];

 [cmd cpclSetMagWithWidth:1 height:1];

 [cmd cpclSetMagWithWidth:10 height:10];

 [cmd cpclSetBackground:50];

 [cmd cpclBackTextWithFont:1 fontSize:1 xPos:0 yPos:0 text:@"508"];

 [cmd cpclSetBackground:150];

 [cmd cpclBackTextWithFont:1 fontSize:1 xPos:0 yPos:200

text:@"508"];

 [cmd cpclSetBackground:200];

 [cmd cpclBackTextWithFont:1 fontSize:1 xPos:0 yPos:400

text:@"508"];

 [cmd cpclSetMagWithWidth:1 height:1];

 [cmd cpclSetBackground:0];

 [cmd cpclPrint];

1.34 BackText

Function

Need to add the printed background text

OC(iOS)

Paramter Type Description Valid Range

Font
5 Digit Unit
Number

A font name or number to create the
representation

1,2,3,4,8,55

fontSize
5 Digit Unit
Number

The size of the font 0 to 65535

xPos
5 Digit Unit
Number

x-coordinate of start point 0 to 65535

yPos
5 Digit Unit
Number

y-coordinate of start point 0 to 65535

Text
CR-LF
Terminated
String

The text data to be printed
Up to 8191
characters

Parameter

Sample Code

 return cmd.cmdData;

- (void)cpclBackTextWithFont:(NSInteger)font

 fontSize:(NSInteger)fontSize

 xPos:(NSInteger)xPos

 yPos:(NSInteger)yPos

 text:(NSString *_Nonnull)text;

 PTCommandCPCL *cmd = [[PTCommandCPCL alloc] init];

 [cmd cpclLabelWithOffset:0 hRes:200 vRes:200 height:800

quantity:1];

 [cmd cpclPageWidth:576];

 [cmd cpclCenter];

 [cmd cpclSetMagWithWidth:2 height:2];

1.35 Turn on Status

Function

Gets the status when printing is complete

OC(iOS)

Parameter Type Description
Valid
Range

Flag BOOL
When true, the open state, when false, is
closed

True or
false

Parameter

Sample Code

 [cmd cpclTextWithRotate:0 font:24 fontSize:0 x:0 y:50 text:@"

50 "];

 [cmd cpclTextWithRotate:0 font:24 fontSize:0 x:0 y:250 text:@"

150 "];

 [cmd cpclTextWithRotate:0 font:24 fontSize:0 x:0 y:450 text:@"

200 "];

 [cmd cpclSetMagWithWidth:1 height:1];

 [cmd cpclSetMagWithWidth:10 height:10];

 [cmd cpclSetBackground:50];

 [cmd cpclBackTextWithFont:1 fontSize:1 xPos:0 yPos:0 text:@"508"];

 [cmd cpclSetBackground:150];

 [cmd cpclBackTextWithFont:1 fontSize:1 xPos:0 yPos:200

text:@"508"];

 [cmd cpclSetBackground:200];

 [cmd cpclBackTextWithFont:1 fontSize:1 xPos:0 yPos:400

text:@"508"];

 [cmd cpclSetMagWithWidth:1 height:1];

 [cmd cpclSetBackground:0];

 [cmd cpclPrint];

- (void)cpclTurnOnPrintStatusCallBack:(BOOL)flag;

1.36 PrinterStatus

Function

The current state of the printer can be obtained through this interface

OC(iOS)

Sample Code

1.37 PrinterSN

Function

The serial number of the printer can be obtained through this interface

let cpcl = PTCommandCPCL()

cpcl.cpclTurn(onPrintStatusCallBack: false)

PTDispatcher.share().send(cpcl.cmdData as Data!)

- (void)cpclGetPaperStatus;

PTDispatcher.share().whenReceiveData({ (data) in

 guard let tempData = data else {

 ProgressHUD.showError(NSLocalizedString("Receive data is

empty", comment: ""))

 return }

 if tempData.count != 1 {

 return

 }

 let dic = [

 "00": NSLocalizedString("Ready, lid paper", comment: ""),

 "01": NSLocalizedString("Go paper or print", comment:

""),

 "02": NSLocalizedString("Out of paper", comment: ""),

 "04": NSLocalizedString("Open the lid with paper",

comment: ""),

 "06": NSLocalizedString("Open the lid out of paper",

comment: "")]

 if let statusStr = dic[tempData.hexEncodedString()] {

 ProgressHUD.showSuccess(statusStr)

 }else {

 ProgressHUD.showError(NSLocalizedString("Unknown paper

status", comment: ""))

 }

OC(iOS)

Sample Code

1.38 SetCodePage

Fucntion

This interface is used to set up the printer code page

OC

Parameter

- (void)cpclGetPrinterSN;

let cpcl = PTCommandCPCL()

cpcl.cpclGetPrinterSN()

PTDispatcher.share().send(cpcl.cmdData as Data!)

PTDispatcher.share().whenReceiveData({ (data) in

 guard let tempData = data else {

 ProgressHUD.showError(NSLocalizedString("Receive data is

empty", comment: ""))

 return

 }

 let hexString = tempData.hexEncodedString()

 let rRange = hexString.index(hexString.startIndex, offsetBy: 2)

 let rString = hexString[..<rRange]

 let bRange = hexString.index(hexString.endIndex, offsetBy: -2)

 let bString = hexString[bRange..<hexString.endIndex]

 if rString != "5f" && bString != "00" {

 return

 }

 let result = hexString[rRange..<bRange]

 let SN = HexData.hyConvertHexStr(to: result)

})

- (void)cpclSetCharacterCodePage:(NSString *_Nonnull)codepage;

Parameter Type Description

codepage String

Set the corresponding code page e.g.: "USA" "FRANCE"
"GERMANY" "UK" "DENMARK" "SWEDEN" "ITALY" "SPAIN"
"JAPAN-S" "NORWAY" "DENMARK II" "SPAIN II" "LATIN9"
"KOREA" "SLOVENIA" "CHINA" "BIG5" "CP874" "CP850"
"CP437" "CP860" "CP863" "CP865" "CP866" "CP852" "CP858"
"CP857" "CP737" "CP720" "CP775" "CP855" "CP862" "CP864"
"ISO8859-6" "ISO8859-8" "ISO8859-9" "ISO8859-15"
"WPC1252" "WPC1250" "WPC1251" "WPC1252" "WPC1254"
"WPC1255" "WPC1256" "ISO8859-1" "ISO8859-2" "ISO8859-
3" "ISO8859-4" "ISO8859-5" "TIS11" "TIS18"

Sample Code

1.39 SetArabicTransform

Function

SetArabicDeformationFunction

OC

Parameter Type Description

function
48-
51

48:close 49:Transform, sort by word 50 Transform, sort by
phrase 51 Transform,sort by complete rule

Parameter

1.40 GetArabicTransformStatus

let cpcl = PTCommandCPCL.init()

cpcl.cpclLabel(withOffset: 0, hRes: 200, vRes: 200, height: 50,

quantity: 1)

cpcl.cpclSetCharacterCodePage("WPC1256")

PTDispatcher.share().send(cpcl.cmdData as Data)

- (void)cpclSetArabicTransformFunction:(NSInteger)function;

Function

GetArabicTransformStatus

OC

Description

1.41 SetThaiTransformStatus

Function

SetThaiTransformStatus

OC

Parameter Type Description

status NSInteger 0:close 1:open

Parameter

1.42 SetVietnameseTransform

Function

SetVietnameseTransform

OC

- (void)cpclGetArabicTransformStatus;

return value

00 00 close

01 00 : Transform, sort by word

02 00 : Transform, sort by phrase

03 00 : Transform,sort by complete rule

- (void)cpclSetThaiTransformStatus:(NSInteger)status;

Parameter Type Description

function NSInteger 48 cloase 49 ASCII input 50 UTF-8 input

Parameter

1.43 GetVietnameseTransformStatus

Function

GetVietnameseTransformStatus

OC

Description

2 Line Print Commands

2.1 Left Margin

Function

The MARGIN command is used to offset line print printing by a fixed amount. This

command affects all data printed via line print text or any utilities command which
results in printout.

Swift (iOS)

- (void)cpclSetVietnameseTransformFunction:(NSInteger)function;

- (void)cpclGetVietnameseTransformStatus;

return value

00 00 close

01 00 : ASCII input

02 00 : UTF-8 input

public func cpclLineMargin(offset: Int)

Parameter Type Description
Valid
Range

Offset
3 Digit Unit
Number

Specifics the distance from the left
edge in units

0 to 999

Parameter

Sample Code

2.2 LF equals CRLF (Line Print)

Function

the LP-LF-EQUALS-CRLF command is used to tell the printer that when

printing line print text, the LF character is equivalent to the two characters CR
and LF.
This command only applies to line print text; it has no effect on any other part
of the printer’s operation.
The value is persistent until reboot or until changed. The default value is OFF.

Swift (iOS)

Parameter Type Description
Valid
Range

Option
Space terminated
string

Specifies the enable or disable of
the function

ON or
OFF

Parameter

Sample Code

2.3 Orient (Line Print)

Function

The LP-ORIENT command is used to specify if line print operates in standard

mode, or in rotated mode.
The implementation of LP-ORIENT is such that the data received is only
reversed and rotated, and as such, to create readable text, significant
modification of the format of the text is required before transmission to the
printer to make it readable. See the example for an indication on how to send

public func cpclLinePrintSetLF(option: String)

the data.There is only one rotation supported which is 270 degrees.
The only other supported option is 0, which is the power on default. The value
specified is retained until it is changed or the printer’s power is cycled.
Only line print text is affected by the LP-ORIENT command. When using LP-
ORIENT 270, the LMARGIN and SETLF commands have no effect; the MARGIN

is fixed at 0, and SETLF is forced to 10.
When using LP-ORIENT 270, the height of the page is determined by the
number of lines transmitted.
LP-ORIENT 270 is not supported for TrueType fonts.

Swift (iOS)

Parameter Type Description
Valid
Range

Option
Space terminated
string

Specifies the amount of
rotation

0 or 270

Parameter

Sample Code

2.4 Line Print Position Adjust

Function

RX, RY, and RXY are used in line print mode to specify that an element should be
positioned relative to the line print text element printed. The command can be
used at any time to adjust the line print cursor position, even in the middle of a
string of line print characters.
This command only impacts line print text and the g command. It has no effect
on labels or utilities-based line print commands.

Swift (iOS)

Parameter

public func cpclLinePrintOrient(option: Int)

 public func cpclLinePrintAdjust(xPos xPos: Int)

 public func cpclLinePrintAdjust(yPos yPos: Int)

 public func cpclLinePrintAdjust(xPos xPos: Int, yPos: Int)

Parameter Type Description Valid Range

XValue
5 Digit
Number

Specifies the value to use for the X
position

-32767 to
32767

YValue
5 Digit
Number

Specifies the value to use for the Y
position

-32767 to
32767

Sample Code

2.5 Set LF

Function

SETLF is used in line print mode to set how much media is fed by the printer

when the LF character is received by the printer.
At power on, this value is set to 10, which puts a space of 10 pixels between
each row of line print printed characters. Note that this space is an addition to
any space defined by the font itself, which is specified by the SETLP command

on page 176. Any value set is persistent until reboot, except if the AUTOCAL
command is run, which sets it to 0.
SETLF can perform an important function regarding the ability to print PCX

images and barcodes in line print mode. When a barcode or PCX image is
printed in line print, without any modifications, the maximum height of the
output will be the value specified by SETLF (10 by default) plus the height value
specified for SETLP (24 by default), or 34 pixels. Adjusting the SETLF value up
allows a larger maximum height to be printed. See page 175 for an introduction
to line print for more information.

Swift (iOS)

Parameter Type Description
Valid
Range

Height
5 digit Unit
Number

Specifies the height fed when an LF
is received

0 to
32767

Parameter

Sample Code (Swift)

public func cpclSetLF(height: Int)

cpclLineMode()

cpclSetLF(0)

cpclInsertTextLine("height of each line 0")

2.6 Set LP

Function

SETLP is used to set the name or number and size of the font which is to be

used for printing line print text. The font can either be a pre-scaled font or a
TrueType font.
The default values for SETLP use the pre-scaled font syntax, and specify font
number 7, size 0, and a line spacing of 24.

Swift (iOS)

cpclInsertTextLine("text line")

cpclInsertTextLine("text line")

cpclInsertTextLine("text line")

cpclLineMode()

cpclSetLF(60)

cpclInsertTextLine("height of each line 60")

cpclInsertTextLine("text line")

cpclInsertTextLine("text line")

cpclInsertTextLine("text line")

cpclLineMode()

cpclSetLF(80)

cpclInsertTextLine("height of each line 80")

cpclInsertTextLine("text line")

cpclInsertTextLine("text line")

cpclInsertTextLine("text line")

cpclLineMode()

cpclSetLF(160)

cpclInsertTextLine("height of each line 160")

cpclInsertTextLine("text line")

cpclInsertTextLine("text line")

cpclInsertTextLine("text line")

cpclLineMode()

cpclSetLP(font: 4, fontSize: 0, lineSpacing: 80)

cpclSetLF(40)

cpclPrint()

cpclInsertTextLine("height of each line 40")

cpclInsertTextLine("text line")

cpclInsertTextLine("text line")

cpclInsertTextLine("text line")

Parameter

Parameter Type Description
Valid
Range

FontNameOrNumber
Space-
Terminated
String

A font name or number to create the
representation

See
Below.

FontSize 3 Digit Number The size of the font.
0 to
65535

LineSpacing
5 Digit Unit
Number

The amount of space to place
between lines in units.

0 to
65535

Pre-scaled Font Syntax

Parameter Type Description
Valid
Range

TrueTypeFontName
Space-
Terminated
String

The filename of the TTF font with
extension

See
Below.

XScale
5 Digit Unit
Number

The X size of the font, in units.
10 to
1450 dots

YScale
5 Digit Unit
Number

The Y size of the font, in units.
10 to
1450 dots

LineSpacing
5 Digit Unit
Number

The amount of space to place
between lines in units.

0 to
65535

Alternate Syntax – TTF Font Syntax

Sample Code (Swift)

// Pre-Scaled Font Syntax

public func cpclSetLP(font font: Int, fontSize: Int, lineSpacing: Int)

// Alternate Syntax - TTF Font Syntax

public func cpclSetLP(trueTypeFont font: String, xScale: Int, yScale:

Int, lineSpacing: Int)

cpclLineMode()

cpclSetLP(font: 4, fontSize: 2, lineSpacing: 46)

cpclInsertTextLine("font 4 size 2 vertical spacing 46")

cpclLineMode()

cpclSetLP(font: 1, fontSize: 2, lineSpacing: 46)

cpclInsertTextLine("font 1 size 2 vertical spacing 46")

cpclLineMode()

cpclSetLP(font: 1, fontSize: 0, lineSpacing: 46)

2.7 Set LP Buffer

Function

SETLP-BUFFER is used to set the height of the line print buffer. This buffer

represents the maximum area that can be written to in a single line print
transaction.
Typically the size of this buffer does not require adjustment because Link-OS
CPCL will seamlessly join line print buffers while printing normal text or line
print graphics.
There are a small number of cases for which this command is needed however,
such as printing a PCX or Barcode longer than the default SETLP-BUFFER size.

The default buffer at power on is 2400 dots. Any value set will remain active
until it is changed or until reboot.

Swift (iOS)

Parameter Type Description
Valid
Range

Height
5 digit Unit
Number

Specifies the size of the line print
buffer in units.

0 to 2400
dots

Parameter

Sample Code

2.8 Set LP Timeout

Function

cpclInsertTextLine("font 1 size 0 vertical spacing 46")

cpclLineMode()

cpclSetLP(font: 1, fontSize: 2, lineSpacing: 92)

cpclInsertTextLine("font 1 size 2 vertical spacing 92")

cpclLineMode()

cpclSetLP(font: 4, fontSize: 0, lineSpacing: 40)

cpclInsertTextLine("font 4 size 0 vertical spacing 40")

public func cpclSetLPBuffer(height: Int)

SETLP-TIMEOUT sets how long the printer waits for additional line print text

data before forcing termination and printing of un-terminated data.
Normally lines in line print text are terminated with a CR, an LF or a CR and LF
character. If data arrives which is not terminated with a CR or LF, this timeout
specifies how long the printer will wait for more data before terminating the line
and printing the data.
Each time a character destined for line print is received, the timer is reset. In
addition, the timer is reset when a line print barcode or PCX command is

processed.
The default value at power on is 4 (representing 500ms). The value is persistent
until power cycle or changed with this command. Setting this command to a
value of 0 disables the line print timeout, and characters will be held forever
until a terminator is received.

Swift (iOS)

Parameter Type Description Range

Timeout
5-digit
Number

Specifies line print timeout in 1/8th of a
second increments

0 to
99999

Parameter

Sample Code

2.9 Set Position

Function

X , Y , and XY are used in line print mode to specify that an element should

be positioned. The command can be used at any time to adjust the line print
cursor position, even in the middle of a string of line print characters.
This command only impacts line print text and the g command. It has no effect
on labels or utilities-based line print commands.

Swift (iOS)

Parameter

public func cpclSetLPTimeout(timeout: Int)

public func cpclSetPosition(xPos xPos: Int, yPos: Int)

public func cpclSetPosition(xPos xPos: Int)

public func cpclSetPosition(yPos yPos: Int)

Parameter Type Description Valid Range

XValue
5 Digit
Number

Specifies the value to use for the X
position

-32767 to
32767

YValue
5 Digit
Number

Specifies the value to use for the Y
position

-32767 to
32767

Sample Code (Swift)

2.10 Line Feed

Function

is a line print character which is used to advance the cursor along the Y axis
while not resetting the X axis.
The height advanced in the Y direction is specified by the SETLF command. By
default, the value is 10,

Swift (iOS)

Sample Code

2.11 Carriage Return

cpclLineMode()

cpclSetPosition(xPos: 0, yPos: 0)

cpclInsertTextLine("XY")

cpclLineMode()

cpclSetPosition(xPos: 50, yPos: 50)

cpclInsertTextLine("XY")

cpclLineMode()

cpclSetPosition(xPos: 150, yPos: 150)

cpclInsertTextLine("XY")

cpclLineMode()

cpclSetPosition(xPos: 200, yPos: 200)

cpclInsertTextLine("XY")

public func cpclLineFeed()

Function

is a line print character which is used to advance the cursor along the Y axis and also
reset the X axis to 0.

Swift (iOS)

Sample Code

2.12 Line Print Graphics

Function

The g command is used to print graphics in line print mode.
Each g command is used to print a single pixel line of graphic data. The width of
the line is specified in the first two bytes following the g command as a 16-bit
integer. All current printers with CPCL only require a single byte to represent
maximum width, though both bytes must be specified.
The design intent of the g command is that the SETLP and SETLF commands
first be used to configure the total line height to 1 pixel, since each g command
only prints one line at a time. g by itself will not affect any print out; the or
commands must be used at the end of the line to terminate it. Generally this
involves setting the LF height to 1 with the SETLF command, and setting the font
height to 0 with the SETLP command. See the example below for more
information.
The g command positions its output at the current line print cursor location.
The LMARGIN, RX, RY, RXY, X, Y and XY commands can all be used to control the
position of the line print cursor. The LMARGIN command is often used to avoid
having to specify large blocks of blank space at the start of lines. The RY
command can be used to easily skip areas of blank paper without having to
send large amounts of NUL data.

Swift (iOS)

Parameter

public func cpclCarriageReturn()

public func cpclLinePrintGraphics(byteWidth byteWidth: Int,

bitmapData: NSData)

Parameter Type Description
Valid
Range

ByteWidth
2 Byte Binary
Number

The byte width of the data for this
dot line

0 to 104 in
practice

Data Raw String
The data that makes up the
bitmap to be printed.

See below.

Sample Code

3 Font Commands

3.1 File Header

Function

CPF and ECPF fonts both begin with a human readable file header, followed by
binary data. The header contains identification information and the size table
mentioned above. All CPF fonts begin with the text CISBF. This identifies the file
as a font.
At startup, all files on the printer are checked for this header, and if it is found,
the printer attempts to load them as CPF fonts.
The items beginning with a dash may appear in any order in the font file
(although the –END-FONT-INF must be at the end)

Swift (iOS)

Parameter

public func cpclFileHeader(description description: Int, fontNumber:

Int, sizeOut: Int)

public func cpclFileHeaderDefineScalingFactor(heightMult

heightMult:Int, widthMult: Int, pageOffset: Int)

public func cpclEndOfHeaderDesignation()

Field Name Description Type Valid Range

Description Description of the font file. Terminated String
Up to 30
characters

FontNumber The font number, optional. Terminated String 8 to 63

SizeCount
The number of entries in the
sizes table.

Terminated String 1 to 255

HeightMult
The height scaling factor of
this size.

Space Terminated
String

0 to 65535

WidthMult
The width scaling factor of
this size.

Space or CRLF
Terminated

0 to 65535

PageOffset
The address location of the
bitmaps

4 binary bytes
(uint32)

All values
valid.

Sample Code

3.2 Char Set And Country

Function

This command is used to set the encoding for CPF, CSF and TTF fonts in CPCL.
For more information about the various internal supported options, see the
previous section.
Besides the list of internally supported encodings, custom encodings from ZPL
can also be used in CPCL by using the filename in place of the Name option
above. These files are referred to by the filename, without their extension,
which must be .DAT. See the ZPL documentation for more information on
custom character mappings.

Swift (iOS)

Parameter

public func cpclCountry(country: String)

Name Encoding Type

BIG5 BIG5 Encoding. TTF maps to UTF points, multi byte.

CHINA EUC-CN Encoding, TTF maps to UTF points, multi byte.

CP850
USA with substitutions, single byte. Box and graphics chars not
supported.

CP874 Font defines encoding for CPF, TTF maps to UTF points. , single byte.

FRANCE USA with 7-bit substitutions, single byte.

GERMANY USA with 7-bit substitutions, single byte.

ITALY USA with 7-bit substitutions, single byte.

JAPAN GBK Encoding, TTF maps to UTF points, multi byte.

JAPAN-S GBK Encoding. TTF maps to UTF points, multi byte.

KOREA GBK Encoding, TTF maps to UTF points, multi byte.

LATIN9 USA with substitutions, single byte.

NORWAY USA with 7-bit substitutions, single byte.

SPAIN USA with 7-bit substitutions, single byte.

SWEDEN USA with 7-bit substitutions, single byte.

THAI Thai multi-byte encoding. Superseded by CP874.

UK USA with 7-bit substitutions, single byte.

USA Font defines encoding, single byte.

VIETNAM Font defines ECPF encoding, TTF maps to UTF points, multi byte.

Sample Code (Swift)

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 250, quantity: 1)

cpclCenter()

cpclCountry("CHINA")

cpclText(rotate: 0, font: 5, fontSize: 0, x: 10, y: 10, text: "chinese

traditional sample")

cpclSetMag(width: 1, height: 1)

cpclText(rotate: 0, font: 9, fontSize: 0, x: 10, y: 50, text: "Print")

cpclText(rotate: 0, font: 8, fontSize: 1, x: 10, y: 100, text:

"Print")

cpclText(rotate: 0, font: 8, fontSize: 3, x: 10, y: 150, text:

"Print")

cpclPrint()

4 Media Management Commands

4.1 Auto Cal

Function

The AUTODIAL command is used to calibrate the detection thresholds of the

printer based on the currently selected media type.
By default, the printer is preset to calibration thresholds of 70 for mark\bar
media and 50 for gap media. These values are selected to be compatible with a
wide range of medias, however if the media is unusual performance may be
improved through this calibration process. The current values are viewable on
the two-key report . The command uses two labels worth of media to perform
the calibration.

Swift (iOS)

Sample Code

4.2 Auto Pace

Function

For printers which have the peeler accessory, the AUTO-PACE activates the use

of the peeler sensor, and will cause the printer to print one label, and then wait
for its removal before printing the next label, which can be part of a batch, or
can be a single quantity label. The batch is defined by the quantity parameter
which is part of the label session definition. See page 18 for more information
on the label session.
No other printing operations will occur while the printer is waiting for the label
to be taken, including line print or prints from other languages.
On some models, the peeler sensor must be physically activated before it can
be used, and not all models have the peeler accessory. See your user manual
for more information. On printers which do not have the peeler accessory,
AUTO-PACE acts the same as the PACE command.

Swift (iOS)

Parameter

public func cpclAutoCal()

public func cpclAutoPace(delay: Int)

public func cpclAutoPace()

Parameter Type Description
Valid
Range

Delay
5 Digit Unit
Number

How long to delay in 0.125 second
increments

0 to
65535

Sample Code (Swift)

4.3 Bar Sense

Function

The BAR-SENSE command is used to configure the system to use the reflective

sensor for detecting media and synchronization marks. This is the
recommended setting for media with marks, and for continuous media. This
command is the opposite of GAP-SENSE .

BAR-SENSE takes an optional parameter which is used to set the detection
threshold.
Once set, either in a label or utilities session, it is persistent for all subsequent
labels until power off. The setting (as well as the threshold) can be made
permanent using the zpl.save SGD. See the examples for more information.
The setting is shared with the ZPL setting specified by ^MN, and is equivalent to
^MNM.

Swift (iOS)

Parameter

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 210, quantity: 1)

cpclAnnotation("tell printer to print a label")

cpclAnnotation("after each 'feed' key press")

cpclAnnotation("until all 3 labels are printed")

cpclAutoPace()

cpclAnnotation("center the text")

cpclCenter()

cpclText(rotate: 0, font: 4, fontSize: 0, x: 0, y: 10, text: "printer

3 labels")

cpclText(rotate: 0, font: 4, fontSize: 0, x: 0, y: 90, text: "using

PACE")

cpclPrint()

public func cpclBarSense(threshold: Int)

Parameter Type Description
Valid
Range

Threshold
5 Digit Unit
Number

Media detection threshold for bar
media

0 to 255

Sample Code

4.4 Contrast

Function

The CONTAST command is a legacy form of print darkness adjustment which

gives a coarse adjustment to the darkness of printed labels. Setting CONTRAST
temporarily sets the print.contrast SGD to the value provided.
The TONE command provides significantly more granularity for configuring the

darkness of printed labels.
TONE and CONTRAST are unique settings in CPCL, and are not interchangeable.
The value set for TONE overrides CONTRAST if the value of TONE is not zero.
This includes if the SGD print.tone is set to a value other than zero, even during
if no CPCL TONE command has been issued.
In order for CONTRAST to have any effect, TONE must be zero.
The default value for CONTRAST is 0, but at power on the current CONTRAST
value is set to the value of the print.contrast SGD.

Swift (iOS)

CONTRAST value TONE Value ~SD Value

0 0 10

1 100 20

2 200 30

3 200 30

Parameter

Sample Code (Swift)

public func cpclContrast(value: Int)

4.5 Feed

Function

The FEED command is used to move media the specified amount as soon as the
command is processed.
FEED can be used with both negative and positive numbers. Note that there is
no mechanism that prevents you from feeding an excessively large negative
value causing the printer to lose control of the media.
The FEED operation will ignore all gap or marks on the paper but will terminate
if the printer detects an out of media condition or other error.

Swift (iOS)

Parameter Type Description Valid Range

Amount
5 Digit Unit
Number

How much to feed in
units.

-4000 to 4000
dots

Parameter

Sample Code (Swift)

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 210, quantity: 1)

cpclContrast(0)

cpclText(rotate: 0, font: 4, fontSize: 0, x: 0, y: 0, text: "hello

world")

cpclContrast(1)

cpclText(rotate: 0, font: 4, fontSize: 0, x: 0, y: 0, text: "hello

world")

cpclContrast(2)

cpclText(rotate: 0, font: 4, fontSize: 0, x: 0, y: 0, text: "hello

world")

cpclContrast(3)

cpclText(rotate: 0, font: 4, fontSize: 0, x: 0, y: 0, text: "hello

world")

cpclPrint()

public func cpclFeed(amount: Int)

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 150, quantity: 1)

cpclSpeed(5)

4.6 Form

Function

The FORM command, when used in a label session, signals that after the label

session is close with PRINT or END , and is done printing, the printer should

attempt to synchronize to a mark or gap on the media after the label is printed,
taking into account all adjustments (the TOF value from SET-TOF and label

skip from SETFF).

The command may appear anywhere in the label session but always applies at
the end. The command is not persistent and must appear in each label session
in order to take effect.
The printer will search for the distance specified by the SETFF command (or by

the media.feed_length SGD) for the mark before giving up. No error occurs if
the printer cannot find the mark.
This differs from the command when used in a utilities session, which is covered
in the next section.

Swift (iOS)

Sample Code (Swift)

cpclText(rotate: 0, font: 5, fontSize: 0, x: 0, y: 20, text: "print at

spped 5")

cpclPrint()

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 210, quantity: 1)

cpclSpeed(4)

cpclText(rotate: 0, font: 5, fontSize: 0, x: 0, y: 20, text: "print at

spped 4")

cpclPrint()

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 210, quantity: 1)

cpclSpeed(3)

cpclText(rotate: 0, font: 5, fontSize: 0, x: 0, y: 20, text: "print at

spped 3")

cpclPrint()

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 210, quantity: 1)

cpclSpeed(2)

cpclText(rotate: 0, font: 5, fontSize: 0, x: 0, y: 20, text: "print at

spped 2")

cpclPrint()

public func cpclForm()

4.7 Gap Sense

Function

The GAP-SENSE command is used to configure the system to use the
transmissive sensor for detecting media and synchronization marks. This is the
recommended setting for media with gaps or notches. This command is the
opposite of BAR-SENSE.
GAP-SENSE takes an optional parameter which is used to set the detection
threshold.
Once set, either in a label or utilities session, it is persistent for all subsequent
labels until power off. The setting (as well as the threshold) can be made
permanent using the zpl.save SGD. See the examples for more information.

Swift (iOS)

Parameter Type Description
Valid
Range

Threshold
5 Digit Unit
Number

Media detection threshold for gap
media

0 to 255

Parameter

Sample Code

4.8 Journal

Function

The JOURNAL command (and the associated LABEL command) determine which of

the two modes of operation are used when a mark or gap is encountered while a
label is being printed after a label session is completed.

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 210, quantity: 1)

cpclCenter()

cpclText(rotate: 0, font: 4, fontSize: 0, x: 10, y: 0, text: "This is

a FORM command.")

cpclForm()

cpclPrint()

public func cpclGapSense(threshold: Int)

Swift (iOS)

Sample Code

4.9 Label

Function

The LABEL command (and the associated JOURNAL command) determine which of

the two modes of operation are used when a mark or gap is encountered while a
label is being printed after a label session is completed.

Swift (iOS)

Sample Code

4.10 Multi

Function

MUTLI is used to set the number of labels which print horizontally across the

page. The horizontal labels are exact duplicates across the page; it is not
possible to specify unique content for each horizontal label.
When MULTI is active with a value of 2 or 3, the maximum print width is divided
by the factor specified, and this becomes the new maximum value for the
PAGE-WIDTH command.

Similar to PAGE-WIDTH , MULTI can affect the size of the drawing canvas when

activated. For that reason, it is recommended to place the MULTI command as

the first item in the label session, before the PAGE- WIDTH or any drawing
commands. Value of 2 and 3 are not supported on Epoch printers.
If used in a utilities session, the value specified applies only to line print, and is
persistent. If used in a label session, the setting only applies to the current label
being printed, and is not persistent.
The MULTI command has no effect in line print if the text being printed is

more than one line long.

Swift (iOS)

public func cpclJournal()

public func cpclLabel()

public func cpclMulti(quantity: Int)

Parameter Type Description
Valid
Range

Quantity
5 Digit Unit
Number

How many labels to print across
the page

1 to 3

Parameter

Sample Code

4.11 No Pace

Function

NO-PACE terminates the use of PACE or AUTO-PACE and disables any pause

operation that occurs between prints. NO-PACE is the default state for the

printer at power on.
The command is always persistent when used. If used in a label session, it takes
effect on the label that will be printed when the session ends and any
subsequent sessions.

Swift (iOS)

Sample Code

4.12 Out Of Paper

Function

ON-OUT-OF-PAPER is used to specify what happens when the printer runs out

of paper, or encounters an unexpected mark or gap while printing a label in
LABEL mode.
When the printer is used in LABEL mode, the printed area of the label should
not encounter a mark or gap. Instead, the FORM command should be used
after the label content is printed to synchronize to the end of the form. The
label area defined in the label session should be 32 dots less than the actual
size of the label to ensure proper functionality. If the printer detects a mark or
gap while printing the label (not while using the FORM command), this

command specifies what happens.
In addition, the command provides two separate configuration items regarding
if the configuration applies to line print mode, and also specify an optional file
to run when the end of form situation occurs unexpectedly.
The default values for this command is PURGE 1, and PURGE-LP OFF , and RUN

public func cpclNoPace()

mode is disabled.
When RUN mode is activated, PURGE and WAIT are disabled, as is the Retries
parameter. The retries is forced to 1 when RUN mode is being used. Newly
received labels are handled as if the printer is in WAIT mode.

Swift (iOS)

Parameter

Parameter Type Description
Valid
Range

Mode
Space-
Terminated
String

A font name or number to create
the representation

PURGE or
WAIT

Retries 5 Digit Number
The number of attempts to make
before aborting.

0 to
65535

Standard Syntax

Parameter Type Description
Valid
Range

State
Space-
Terminated String

Specifies the state for line
print purging.

ON or
OFF

PURGE-LP Syntax

Parameter Type Description Valid Range

Filename
Space-
Terminated
String

The filename to run when an
error occurs.

Any valid
filename.

Unused
5 Digit Unit
Number

An unused parameter that must
be specified.

0 to 65535

RUN Syntax

Sample Code

4.13 Pace

Function

public func cpclOneOutOfPaperMode(mode: String, retries: Int, state:

String, filename: String, unused: Int)

PACE is used with label sessions with a print quantity greater than one to

pause between each label. If such a label session is initiated, the printer will
print one label, then stop, and wait for the feed key to be pressed before
printing the next label. This behavior continues until all labels in the batch are
printed. After the final label is printed, normal operation is resumed.
No other printing operations will occur while the printer is printing, including
line print or prints from other languages.
The command disables AUTO-PACE if it is in effect.The command is always

persistent when used. If used in a label session, it takes effect on the label that
will be printed when the session ends and any subsequent sessions.

Swift (iOS)

Sample Code (Swift)

4.14 Paper Jam

Function

The PAPER-JAM command specifies how a paper-jam condition is detected,

and what happens when it occurs.
The function can use either the media sensor and check to see if a mark or gap
occurs to find if there has been a paper jam, or can use the peeler sensor to
detect if no label is present after a label session is sent for printing.
When using any mode besides NONE , if a paper jam is detected, an error will

occur requiring the user to open the head, remove the jam, and then close the

public func cpclPace()

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 210, quantity: 1)

cpclAnnotation("tell printer to print a label")

cpclAnnotation("after each 'feed' key press")

cpclAnnotation("until all 3 labels are printed")

cpclPace()

cpclAnnotation("center the text")

cpclCenter()

cpclText(rotate: 0, font: 4, fontSize: 0, x: 0, y: 10, text: "printer

3 labels")

cpclText(rotate: 0, font: 4, fontSize: 0, x: 0, y: 90, text: "using

PACE")

cpclForm()

cpclPrint()

head before printing will continue.
The command can also return an optional message to the host when a jam
occurs, see the ALERT parameter.

The command is persistent once set either in a label or in a utilities session.

Swift (iOS)

Parameter Type Description Valid Range

Mode
Space
Terminated
String

Sensor to use for detecting jam
condition

See Below

Unused 5 Digit Number
Required unused parameter
for some modes.

See Below

Message Quoted String
Message to be sent to host
when using ALERT.

Up to 100
characters.

Parameter

Mode Description
Requires
Unused

NONE Disable all paper-jam detection (default) No

PRESENTATION Use peeler sensor to detect paper jams. No

INDEX
Use mark or gap sensor to detect paper
jams.

No

BAR
Use mark or gap sensor to detect paper
jams.

Yes

GAP
Use mark or gap sensor to detect paper
jams.

Yes

mode

Sample Code

4.16 PostFeed/PreFeed

Function

public func cpclPaperjamMode(mode: String, unused: String, message:

String)

The POSTFEED/PREFEED command is used to perform an additional media

movement before a label or line print section is printed.
POSTFEED/PREFEED can be used with both negative and positive numbers.

Note that there is no mechanism that prevents you from feeding an excessively
large negative value causing the printer to lose control of the media.
Using the POSTFEED/PREFEED command in a utilities session will cause it to be

persistent until power off, and will also cause the setting to affect line print. If
used in a label session, it will only apply to the label session in which it is used.
The POSTFEED/PREFEED operation will ignore all gap or marks on the paper

but will terminate if the printer detects an out of media or other error condition.

Swift (iOS)

Parameter Type Description Valid Range

Amount
5 Digit Unit
Number

How much to feed in
units.

-4000 to 4000
dots

Parameter

Sample Code (Swift)

4.17 Present AT

Function

When enabled, the PRESENT-AT command causes the printer to feed an

additional amount once a label or line print section has been printed, and then
when the next feed operation of any kind occurs, the motion is undone via an
equal reverse feed. This allows the print to be pushed out to be at the correct
tear off position, but still have the next print be registered to the start of the
print operation.
PRESENT-AT can be used in either a utilities session or a label session. The

effect is persistent until power cycle and in both cases takes effect as soon as
the next print operation completes.

public func cpclPostFeed(amount: Int)

public func cpclPreFeed(amount: Int)

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 210, quantity: 1)

cpclPreFeed(40)

cpclText(rotate: 0, font: 4, fontSize: 0, x: 0, y: 20, text: "prefeed

example")

cpclPrint()

To disable PRESENT-AT , set Amount and Delay to 0. These are also the values

used at power on.If PRESENT-AT was being used, and was then disabled, the
printer will still properly reverse the last PRESENT-AT operation to ensure proper
registration.Typically,
PRESENT-AT values are small, usually up to about 40. Using longer values may
cause registration issues as the media drifts left to right as it is reversed.

Swift (iOS)

Parameter Type Description
Valid
Range

Amount
5 Digit Unit
Number

How much to feed in units.
0 to
20000
dots

Delay
5 Digit
Number

How long to delay before feeding in
1/8th of seconds

0 to 240

Parameter

Sample Code

4.18 Reverse

Function

The REVERSE command, when used in a label session, is used to perform an

additional media movement before a label is printed.
Its function is identical to that of PREFEED when used with a negative value,

although reverse only supports positive values.
Note that there is no mechanism that prevents you from reversing an
excessively large value causing the printer to lose control of the media.
The REVERSE operation will ignore all gap or marks on the paper but will

terminate if the printer detects an out of media or other error condition.
Once set, the setting is persistent until power cycle.
The label session version of REVERSE also affects line print, but there is no way

to change the setting except in a label session due to the different way REVERSE
operates in utilities sessions.

Swift (iOS)

public func cpclPresentAtWithAmount(amount: Int, delay: Int)

public func cpclReverse(amount: Int)

Parameter Type Description Valid Range

Amount 5 Digit Unit Number How much to feed in units. 0 to 4000 dots

Parameter

Sample Code

4.19 Set Feed Length and Skip (Set FF)

Function

SETFF is used to configure the length of a feed operation, and the advance

amount after a mark or gap ends before the next label begins.
The values set with this command are persistent until power off regardless of
whether set from a label or utilities session. They can be made permanent by
using the zpl.save SGD. See the examples below.

Swift (iOS)

Parameter Type Description
Valid
Range

FeedLength
5 Digit Unit
Number

How long is a form feed operation
in units?

0 to 20000
dots

FeedSkip
5 Digit Unit
Number

How long to move after a mark or
gap ends?

5 to 50
dots

Parameter

Sample Code

4.20 Set TOF

Function

The SET-TO F command is used to adjust where the sensing of a mark or gap

occurs relative to the print line.
With the default value of 0, the printer positions the trailing edge of the mark or
gap at the print line, so that when the next dot row is printed, it will be placed
just after the mark or gap. All space up to this point is part of the previous label,
and similarly, the same space at the end of the label is included in this label’s

public func cpclSetFeed(length length: Int, skip: Int)

space.
Adjusting this value to be a positive number moves the resting position of the
end of the mark or gap to be closer to the source roll of media (inside the
printer body). Adjusting the value to be a negative number moves the resting
position of the end of the mark or gap to be further from the print line outside
the printer. The feed skip value specified by SETF F is always applied after this

positioning operation.If used in a utilities session, the setting takes effect on the
FORM operation.
If used in a label session, the setting takes effect on that label session. In both
cases, the setting is persistent until power cycle. The setting can be made
permanent using the zpl.save SGD.

Swift (iOS)

Parameter Type Description Valid Range

Amount
5 Digit Unit
Number

How much to feed in
units.

-400 to 400
dots

Parameter

Sample Code

4.21 Speed

Function

The SPEED command is used to set the maximum speed at which printout

occurs.When used in a label session, the SPEED command takes effect on the

label.
When used as a utilities command, it takes effect immediately for all
subsequent printouts.
The default speed is 3. Note that print speed in CPCL is not in units, but rather is
a scale from 0 to 5. Higher values indicate faster printing, and lower values
indicate slower printing. In addition, print speed is not absolute in CPCL. The
printer may print slower than the value selected based on factors such as print
head temperature or battery levels.
This command sets the SGD media.speed, but does not set it to the number
specified by Value, instead the number specified is converted to inches per
second (which is what media.speed is represented in) and set. The actual value
media.speed is set to varies from printer model to printer model based on the
capabilities of the printer.
Using the SPEED command causes the speed to be set permanently, persisting

not only though label and utilities sessions, but through reboots as well.

public func cpclSetTOF(amount: Int)

Swift (iOS)

Parameter Type Description
Valid
Range

Value
1 Digit
Number

Maximum speed to print in an
arbitrary scale

0 to 5

Parameter

Sample Code

4.22 Tone

Function

The TONE command is used to set the darkness of the printout from the

printer. It provides the same kind of adjustment ability as the CONTRAST

command, but with more fine control.
The range for TONE is -100 to 200, and the default is 0. Higher values are more

dark and lower values are less dark. The TONE and CONTRAST command both

take precedence over SPEED , and the printout will be slowed as necessary to

reach the desired darkness value.
When the value is set in a label or utilities session, the value becomes
permanent, similar to SPEED .

This command affects the print.tone SGD, but due to print.tone’s interaction
with the print.tone_format SGD, the print.tone value may be in a different
format than that of the TONE command. If the print.tone_format SGD is set to

CPCL, the value of the print.tone SGD exactly mirrors that of the TONE
command. If the print.tone_format SGD is set to ZPL, the value specified by the
TONE command will be mapped to a 0.0 to 30.0 value system used by ZPL’s ~SD
command. The converted darkness is identical to the original TONE value.
The CONTRAST command, which predated the TONE command, provides more

rough control over the darkness level of the printout. When the TONE command
is set to a non-zero value, the CONTRAST command (and the print.contrast

SGD) are ignored. When TONE is set to zero, if CONTRAST is non-zero, it will be

used. Note that unlike TONE , CONTRAST does not save its value permanently

when set.

Swift (iOS)

public func cpclSpeed(value: Int)

public func cpclTone(value: Int)

Parameter Type Description
Valid
Range

Value
5 Digit
Number

The relative darkness of the
printout.

-100 to 200

Parameter

Sample Code (Swift)

4.23 Turn

Function

TURN changes the orientation of the printed label or of line print text,

specifying either 0 degree rotation (top out first), or 180 degree rotation
(bottom out first). When using this feature with line print mode, each line print
buffer is individually rotated, which may cause some unexpected issues.
Once set via a label or utilities session, the command is persistent until power
cycle. The value specified in a utilities or in a label session applies to both
session types.

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 210, quantity: 1)

cpclTone(-99)

cpclText(rotate: 0, font: 4, fontSize: 0, x: 0, y: 0, text: "hello

world")

cpclPrint()

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 210, quantity: 1)

cpclTone(0)

cpclText(rotate: 0, font: 4, fontSize: 0, x: 0, y: 0, text: "hello

world")

cpclPrint()

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 210, quantity: 1)

cpclTone(100)

cpclText(rotate: 0, font: 4, fontSize: 0, x: 0, y: 0, text: "hello

world")

cpclPrint()

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 210, quantity: 1)

cpclTone(200)

cpclText(rotate: 0, font: 4, fontSize: 0, x: 0, y: 0, text: "hello

world")

cpclPrint()

Only the image portion of the label is rotated with this command; any media
alignment commands function as expected.

Swift (iOS)

Parameter Type Description Valid Range

Degrees 5 Digit Number The orientation of the label. 0 or 180

Parameter

Sample Code

4.24 Form Feed

Function

is used to simulate pressing of the form feed key on the printer when the
printer is not in a session. This causes the printer to immediately attempt to
synchronize to a mark or gap on the media, taking into account all adjustments
(the TOF value from SET-TOF and label skip from SETFF).
The printer will search for the distance specified by the SETFF command (or by
the media.feed_length SGD) for the mark before giving up. No error occurs if
the printer cannot find the mark.
The command is very similar to the utilities FORM command but has an
important difference. The FF command will cause the printer to execute the
feed action as defined with the ON-FEED command. If this command is set to
IGNORE, FF will have no function. If set to REPRINT, FF will reprint the last
printed label session. By default, the printer is set to ON-FEED FEED, so the
command will cause a feed operation.
Note that the FF.BAT file activated by physically pressing the feed key is not
connected to the FF command, the bat file will not run when FF is received by
the printer.

Swift (iOS)

Sample Code

5 Status Enquiry Commands

public func cpclTurn(degrees: Int)

public func cpclFormFeed()

5.1 Name

Function

NAME returns the null-terminated name of the application currently running on the

printer. In Link-OS printers, this is the same as the appl.name SGD.

Swift (iOS)

Sample Code

5.2 Version

Function

VERSION returns a four-byte null-terminated representation of the version number

of the version currently running on the printer. In Link-OS printers, this is the same
as the appl.version SGD.

Swift (iOS)

Sample Code (Swift)

5.3 Printer Status

Function

h is an escape command which is used to determine printer status.
This command is an escape command, and is not valid within sessions. It can
only be used when the printer is not currently in a session.
The command returns a single byte, which is a bit field indicating various status
attributes. To get the status of a particular field, mask off the unused bits.

Swift (iOS)

public func cpclName()

public func cpclVersion()

cpclVersion()

cpclPrint()

public func cpclPrinterStatus()

Sample Code

5.4 Extended Printer Status

Function

i is an escape command which is used to determine additional printer status.
This command is an escape command, and is not valid within sessions. It can
only be used when the printer is not currently in a session.
The command returns a single byte, which is a bit field indicating various status
attributes. To get the status of a particular field, mask off the unused bits.

Swift (iOS)

Sample Code

5.5 Get Version Information

Function

v is an escape command which is used to obtain a string with printer
information.
This command is an escape command, and is not valid within sessions. It can
only be used when the printer is not currently in a session.
The response of the command is a null terminated string of variable length
which contains the product name, firmware version, compile date, CRC, and the
device’s serial number.

Swift (iOS)

Sample Code

6 Utility and Diagnostic Commands

6.1 Abort

Function

public func cpclExtendedPrinterStatus()

public func cpclGetVersionInfomation()

ABORT terminates a label session in progress without performing any printing. Any

label data received so far as part of this session is lost, except if PERSIST is enabled

Swift (iOS)

Sample Code (Swift)

6.2 Baud

Function

BAUD sets the current baud rate of the serial port. When executed, it

permanently sets the comm.baud SGD. When the command is issued, it takes
effect immediately and is persistent through reboots.
The command has no effect on printers which do not have serial ports. The
default value of BAUD depends on the particular printer.

Swift (iOS)

Parameter Type Description Valid Range

Value 5 Digit Number The baud rate of the serial port. See below.

Parameter

value

Specifies the baud rate to set the serial communications port to. Valid values
are 115200, 57600, 38400, 19200, 4800, 2400, and 1200. Not all printers support
all baud rates. If the baud rate isn’t supported on the current printer or is
invalid, the BAUD command has no effect and the baud rate remains
unchanged.

Sample Code

public func cpclAbort()

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 210, quantity: 1)

cpclPageWidth(240)

cpclBox(xPos: 0, yPos: 0, xEnd: 200, yEnd: 200, thickness: 10)

cpclBox(xPos: 50, yPos: 50, xEnd: 220, yEnd: 220, thickness: 10)

cpclAbort() //

cpclPrint()

public func cpclBaud(value: Int)

6.3 Beep

Function

BEEP causes the printer to produce an audible beep. The length of the beep is

specified in 1/8th of a second increments. While the beep is active other tasks such
as printing may be paused.

Swift (iOS)

Parameter Type Description
Valid
Range

Duration
5 Digit
Number

The length of the beep in 1/8ths of a
second

0 to
65535

Parameter

Sample Code (Swift)

6.4 Capture

Function

CAPTURE provides a tool that can be used to capture data that the printer

receives to a file on the printer, and can also optionally be used to put the
printer into a dump mode which prints the characters received rather than
interpreting them.
The CAPTURE command directly sets the input.capture SGD until reboot.

Swift (iOS)

Parameter

public func cpclBeep(duration: Int)

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 210, quantity: 1)

cpclBeep(32)

cpclPrint()

public func cpclCapture(mode: Int)

Parameter Type Description Valid Range

Mode
CR-LF Terminated
String

The capture mode to
enable

PRINT, RUN,
OFF

Sample Code

6.5 Check Sum/Check Sum Vertical

Function

CHECKSUM returns a four-byte, null-terminated, pre-calculated checksum of the

firmware image on the printer.
In earlier printers, this command calculated the checksum of the firmware and
returned it. Because it takes an extended amount of time to calculate the
checksum, this command returns a fixed checksum for compatibility, and the
new CHECKSUM command is used to verify the checksum.

CHECKSUM is used to validate that the checksum returned by the CHECKSUM

command matches the actual checksum of the firmware.
The CHECKSUM function returns a pre-calculated checksum in order to provide

a quick response to the command for backward compatibility. To validate that
the firmware actually matches that checksum the CHECKSUM command is used.

The CHECKSUM command can take many seconds to execute as it calculates the

checksum. Once complete, it will return either two or three characters, either
the word yes or no with no termination. During the time of calculation, the
printer is unavailable to receive other commands.
If the command returns yes, the checksum provided by CHECKSUM has been

validated. If the command returns no, the checksum calculated did not match
that provided by CHECKSUM.

Swift (iOS)

Sample Code

6.6 Char Count

Function

CHAR-COUNT returns a null terminated string indicating the number of

characters received since the last time the CHAR-COUNT command was issued.
The value is always set to 0 at startup. When the value is read out, it is reset to

public func cpclCheckSum()

public func cpclCheckSumVertical()

0.
The size of the CHAR-COUNT command is always included in the number of

characters counted, because the value is returned after the command is parsed.
CHAR-COUNT counts the received characters for all data received by the

printer’s parsers on all interfaces, not just data which is received by the CPCL
parser.

Swift (iOS)

Sample Code

6.7 Delay Actions

Function

DELAYED-ACTIONS is used to execute a file that is stored on the printer after a delay.

Swift (iOS)

Parameter Type Description
Valid
Range

FileName
Space-
Terminated
String

Filename to execute after delay
A valid
filename

Delay 5-Digit Number
Time to delay in 8th of a second
increments

0 to 65535

Parameter

Sample Code

6.8 Display

Function

DISPLAY is used to display raw text on the display of the printer. The

command is parsed but has no effect on printers which do not have displays.

public func cpclCharCount()

public func cpclDelayedActionsWithFileName(filename: String, delay:

Int)

The command has two options. TEXT (and its alias T) are used to place text on
the display, and the LCD- DBG INFO option is used to obtain information about
the display.

Swift (iOS)

Parameter Type Description Valid Range

Message Terminated String Text to place on the screen. Any Text.

Parameter

Sample Code

6.9 Dump

Function

DUMP is an alias for CAPTURE PRINT in Link-OS printers. See that command on page

258 for more information.

Swift (iOS)

Sample Code

6.10 Dump Image

Function

DUMP-IMAGE dumps the label memory of a label session currently being
rendered.
The command can either dump label memory in bytes or in bits. If the BYTES
option is specified, the label data is returned in hexadecimal bytes, otherwise it
is returned in binary.
This command can only be used in label sessions, and the label data is dumped
at the time the command is parsed. Note that the dumping can take a rather
long time, and during that time no other system operations can occur.

Swift (iOS)

public func cpclDisplay(message: String)

public func cpclDump()

Parameter Type Description Valid Range

LineCount 5-Digit Number The number of dot lines to dump 0 to 65535

Start 5-Digit Number The starting dot line to dump 0 to 65535

Parameter

Sample Code

6.11 Get Date

Function

GET-DATE returns the current date as set on the printer’s real-time clock to the

host. While all printers have a real-time clock, not all of them are battery backed
up to preserve the time when the printer is powered off. See your printer’s
documentation for more information.
The date is formatted in the form mm-dd-yyyy , followed by a NUL character.

The date can be set either via the rtc.date SGD or the SET-DATE CPCL

command.

Swift (iOS)

Sample Code

6.12 Get Time

Function

GET-TIME returns the current time as set on the printer’s real-time clock to the

host. While all printers have a real-time clock, not all of them are battery backed
up to preserve the time when the printer is powered off. See your printer’s
documentation for more information.
The time is formatted in the form hh:mm:ss , followed by a NUL character. The

time is always in 24-hour format.
The time can be set either via the rtc.time SGD or the SET-TIME CPCL

command.

Swift (iOS)

public func cpclDumpImageWithBitsWithLineCount(lineCount: Int, start:

Int)

public func cpclGetDate()

Sample Code

6.13 Get Var

Function

GETVAR is the primary method of retrieving the current setting of a

configuration setting from the printer. These configuration settings are called
SGD settings, short for Set-Get-Do, which outlines the three commands that can
be used to interact with the settings, SETVAR , GETVAR and DO .

These three commands are always available on every Link-OS printer,
regardless of current language selected. Even Link-OS Printers which do not
support the CPCL language support these CPCL commands.
The GETVAR command can be in lower or upper case, but must be of a single

case (it cannot be mixed). Generally CPCL commands must be in upper case,
but this one is supported in both cases for backwards compatibility.
When used to access settings, the GETVAR command returns the current value

of the setting. Some settings are preserved between power cycles, and some
settings can also have temporary values that will be reset to the saved value
with the printer is reset.
The GETVAR command cannot be used to determine properties about the

setting, only its current operating value. See the documentation of each SGD for
more information.
The response to GETVAR is a quote-bound string specifying the value of the

setting requested. If the setting is not available or not valid on this printer, the
response will be a double-quote bound question mark.
Requesting some settings which are not supported my result in an empty pair
of double-quotes.
SGD settings are organized into branches, which group settings of similar type.
The available setting branches vary depending on the model of printer.

Swift (iOS)

Sample Code

6.14 Line Terminator

Function

LT is used to change the way CPCL lines are terminated. At power on, all lines

public func cpclGetTime()

public func cpclGetVarWithSettingName(settingName: String)

in CPCL must be terminated with . All examples and text within this document
refer to this default behavior. It is possible, however, to change the way lines are
terminated using this command.
Regardless of what mode is selected, lines can always be LF terminated, and any
CR that exists before the LF will be consumed. Lines can also always be NUL

terminated.
When an invalid command is received by CPCL, the parser always consumes the
data up to the next CR- LF , regardless of the setting of LT .

The various parameter types in CPCL act differently with regard to how they
handle excess characters besides the specific ones specified, or other details on
how they are terminated.
For example, while a numeric parameter will consume any excess CRs before an
LF, a file parameter such as in GETVAR will not. It is also possible to terminate

commands with spaces, and in some cases arbitrary characters. The rules vary
based on the parameter type that is the last one in the command, or in some
cases, the command itself.
For this reason, it is best to select the proper terminator and use it as specified
to ensure correct behavior.

Swift (iOS)

Mode Description

LF Lines are terminated with LF. A single CR before the LF is always ignored.

CR-LF Same as LF.

CR
Lines are terminated with CR or LF. An LF character after a CR will not be
processed and will fall out to the next parser.

CR-X-
LF

Lines are terminated with , but zero or more characters (including NULs)
may appear between the CR and the LF. These characters between the CR
and LF will be consumed and ignored.

Parameter

Sample Code

6.15 Max Label Height

Function

MAX-LABEL-HEIGHT is a command provided for backwards compatibility. In

previous CPCL products, it returned the maximum number of dot lines a label
session could be due to memory limitations.

public func cpclLineTerminator(mode: String)

In Link-OS, this value is always 65535, which is the maximum label height
supported in CPCL. The value is null terminated.

Swift (iOS)

Sample Code

6.16 On Feed

Function

ON-FEED specifies what occurs when the user presses the feed button.
By default, and each time the printer is powered on, the feed button on the
printer causes the printer to feed to the next mark or gap, or in the case of
continuous media the page length set by SETFF. See page 232 for more
information on that command. This command allows to you change the
function of the feed button to either have it reprint the last label, or ignore the
key press.

Swift (iOS)

Value Description

FEED
Paper is fed to mark or gap as described above. This is the default
behavior.

REPRINT
The last label printed is printed again. If no label has been printed since
power on, no motion occurs.

IGNORE The key press is ignored, and no motion occurs.

Parameter

Sample Code

6.17 On Low Battery

Function

ON-LOW-BATTERY specifies an optional alarm and message which is presented

public func cpclMaxLabelHeight()

public func cpclOnFeed_Feed()

public func cpclOnFeed_Reprint()

public func cpclOnFeed_Ignore()

to the user when the battery of the printer is low.
The three options in the command, ALERT , ALARM and NONE are all optional,

any number or none of them may be present, though if none are, the command
is parsed but has no effect.
By default, both the audio and text alert are disabled (which is equivalent to the
NONE option).
The notifications only take effect on the point of transition to battery low. If the
battery is already low when the commands are sent, they will not have any
effect until the battery transitions from normal to low again.

Swift (iOS)

Parameter Type Description
Valid
Range

AlertText
Quoted
String
Parameter

Specifies the text to be displayed
when the battery is low on the
display

0 to 100
characters

AlarmLength
5-Digit
Numeric
Parameter

Specifies length of audible alarm in
1/8th of a second increments

0 to
65535

Parameter

Sample Code (Swift)

6.18 Re-Run

Function

RE-RUN is a special purpose command that can only be used within formats which

are stored on the printer. The command instructs the printer to run the format file
again once it has completed execution.

Swift (iOS)

public func cpclOnLowBatteryWithAlertText(altertText: String,

alarmLength: Int)

public func cpclOnLowBateryWithNone()

cpclUtilitySession()

cpclOnLowBatteryWithAlertText("Low Battery Alert!", alarmLength: 40)

public func cpclReRun()

Sample Code

6.19 Set Date

Function

SET-DATE sets the current date on the printer’s real-time clock. While all

printers have a real-time clock, not all of them are battery backed up to
preserve the time when the printer is powered off. See your printer’s
documentation for more information.
The date is formatted in the form mm-dd-yyyy .

The date can be read via the rtc.date SGD, or via the GET-DATE CPCL

command.

Swift (iOS)

Parameter Type Description
Valid
Range

Date
CR-LF Terminated
String

The date to set the real-time
clock to.

See
below.

Parameter

Sample Code

6.29 Set Time

Function

SET-TIME sets the current time on the printer’s real-time clock. While all printers

have a real-time clock, not all of them are battery backed up to preserve the time
when the printer is powered off. See your printer’s documentation for more
information.

The time is formatted in the form hh:mm:ss .

The time can be read via the rtc.time SGD, or via the GET-TIME CPCL command.

Swift (iOS)

Sample Code

public func cpclSetDate(date: String)

public func cpclSetTime(time: String)

6.30 Set Version

Function

SET-VERSION is used to set the response of the VERSION command (as well

as the appl.version SGD). This function is provided so that applications that rely
on a particular reply for the VERSION command can continue to function with
newer versions of software.

The change of value is temporary, and cannot be stored permanently. Upon
reboot, it will always reset to its default value which

Swift (iOS)

Parameter Type Description Valid Range

Version
Terminated
String

The version to set
appl.version to

Up to 20
characters

Parameter

Sample Code

6.31 Set Var and DO

Function

SETVAR is the primary method of setting the value of a printer configuration

setting. These configuration settings are called SGD settings, short for Set-Get-
Do, which outlines the three commands that can be used to interact with the
settings, SETVAR , GETVAR and DO .

These three commands (SETVAR, GETVAR and DO) are always available on every
Link-OS printer, regardless of current language selected. Even Link-OS Printers
which do not support the CPCL language support these CPCL commands.
The SETVAR command, and its alias DO , can be in lower or upper case, but

must be of a single case (it cannot be mixed). Generally CPCL commands must
be in upper case, but this one is supported in both cases for backwards
compatibility.
Some settings are not actually settings, but triggers for actions. These are
commonly called “DO” commands. The device.reset SGD is one such example of
a DO. Setting the device.reset SGD to any value, including an empty string,
causes the printer to reboot. It is the setting which determines if an action is
taken or if a setting is changed. Either setting command may be used to activate

public func cpclSetVersion(version: String)

the function.
When SETVAR is used to set a setting which is persistent between power

cycles, SETVAR will set the setting in such a way that it is saved. This statement
may seem obvious, but some commands which set settings set them in such a
way that they will be restored to the last saved value on power cycle.
Not all settings persist between power cycles; see the documentation of each
SGD for more information.

Swift (iOS)

Parameter

SettingName

Specifies the name of a setting to which is to be set. This string should be bound
by double quotation marks.

Value

Specifies the value to set the setting to. This string should be bound by double
quotation marks.

Sample Code

6.32 Timeout

Function

TIMEOUT is used to set the amount of time the printer will sit idle before it

powers down. This function generally only applies to printers powered by
batteries.
Idle is considered by the printer to be a state without printouts, user interaction
with the keypad, or changes in printer status (such as head open to close).
Setting the TIMEOUT to zero disables the power down on idle functionality.

This function explicitly sets power.inactivity_timeout, but the value set by
TIMEOUT only persists until reboot (or power down). Setting the SGD explicitly
will make the setting permanent. See the SGD documentation for more
information on the function.

Swift (iOS)

Parameter

public func cpclSetVarAndDoWithSettingName(settingName: String, value:

String)

public func cpclTimeout(value: Int)

Parameter Type Description
Valid
Range

Value
5 Digit
Number

The length of the timeout in 1/8ths of
a second

0 to
65535.

Sample Code (Swift)

6.33 Wait

Function

WAIT is used to add a delay in a label session after a label is printed.

Only one WAIT command can be used per label session. The final WAIT

command in the label is the one which is executed. If the label is reprinted, or if
it is part of a batch, the wait will occur each time it is printed.

Swift (iOS)

Parameter Type Description
Valid
Range

Duration
5-Digit
Number

Length to delay in 1/8ths of a
second

0 to 65535

Parameter

Sample Code (Swift)

cpclLineMode()

cpclTimeout(48)

cpclPrint()

public func cpclWait(duration: Int)

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 150, quantity: 5)

cpclWait(80)

cpclText(rotate: 0, font: 5, fontSize: 0, x: 0, y: 60, text: "Delay 10

seconds")

cpclForm()

cpclPrint()

6.34 Label Session Position

Function

X, Y, and XY are used to specify the value of X and Y parameters in label
sessions, eliminating the need to specify them in label formatting commands.
The X, Y and XY commands have a different effect if used in Line Print mode.
See those commands on page 181 for more information.
These commands affect many functions in CPCL. Anywhere the parameter
names [X] or [Y] are used in this document, this function will replace them if the
commands are used in label sessions.
X permits you to set and omit the X parameter, Y permits you to set and omit
the Y parameter, and XY does both. Each can be individually activated and
deactivated.
When the label session ends, the X, Y and XY commands are deactivated.

Swift (iOS)

Parameter Type Description
Valid
Range

XValue
5 Digit
Number

Specifies the value to use for the X
position

-1 to
65535

YValue
5 Digit
Number

Specifies the value to use for the Y
position

-1 to
65535

Parameter

Sample Code

6.35 Sound Printer Bell

Function

is an escape command which sounds the printer’s bell. It has no parameters. The
character is ASCII character 7.

Swift (iOS)

public func cpclSetLabelPosition(xPos xPos: Int, yPos: Int)

public func cpclSetLabelPosition(xPos xPos: Int)

public func cpclSetLabelPosition(yPos yPos: Int)

Sample Code

6.36 Backspace

Function

is an escape character which is used to back up the text cursor one position
along the X axis. The amount backed up is determined by the last character
printed. If no character has been printed, no motion occurs.
This command applies to line print mode, as well as any label command in the
family of TEXT commands .
The BS command us not supported when using TrueType fonts with ROTATE
values besides 0.

Swift (iOS)

Sample Code

6.37 Get or Set CCL Key

Function

The CCL Key is the character used to start sessions. By default, and at power on, the
Key is set to the exclamation point character .

Swift (iOS)

Parameter Type Description Valid Range

Key Single Raw Byte Specifies the CCL Key. 0 to 255

Parameter

Sample Code

6.38 Send Two-Key Report to Host

public func cpclSoundPrinterBell()

public func cpclBackspace()

public func cpclGetOrSetCCLKey(key: Int)

Function

I is used to instruct the printer to transmit the two-key report to the host, rather
than printing it. The V command is used to print the two-key report.
The two key report returned via this command has the same fields and
information as the printed report, although it omits any barcodes that may be
printed on the report.

Swift (iOS)

Sample Code

6.39 Send User Label Count

Function

JRU is used to retrieve the user label count, which is incremented any time a
label is printed, regardless of control language the label originated from.
The value is returned as a 16-bit number (2 bytes), which represent the same
value as contained in the SGD odometer.user_label_count.

Swift (iOS)

Sample Code

6.40 Acknowledge Reset

Function

N is used to acknowledge the fact that the printer has been reset. The reset
status is part of the
h command, representing bit 4. At power on, that bit initially is a value of 1.
After issuing the
N command, the value of that bit changes to 0 and remains so until the printer
is reset.

Swift (iOS)

Sample Code

public func cpclSendTwoKeyReportToHost()

public func cpclSendUserLabelCount()

public func cpclAcknowledgeReset()

6.41 Shut Down Printer

Function

p is used to shut down the printer. This feature only applies to printers which
can shut themselves down, which includes all battery-based Link-OS printers.
As soon as the command is received, the printer will power off.
This function is equivalent to setting the power.shutdown SGD to anything.

Swift (iOS)

Sample Code

6.42 Print Two-Key Report

Function

V is used to instruct the printer print a copy of the two-key report the two-key report.

Swift (iOS)

Sample Code

7 Magnetic Card Reading Commands

7.1 MCR

Function

The MCR command is used to configure all aspects of the magnetic card reading
system in CPCL.
The Timeout parameter and at least one track must be specified, but all other
parameters are optional.
The MCR command is very versatile and can be used in a number of ways. Be
sure to see the examples section for some examples of the various ways the
command can be used.
At the start of each MCR command, all options in the MCR system are reset to
the values listed as defaults below, for both options and parameters.
On printers without magnetic card readers, this command is parsed but

public func cpclShutDownPrinter()

public func cpclPrintTwoKeyReport()

ignored.

Swift (iOS)

Parameter Type Description Valid Range

Timeout 5 Digit Number
The timeout of the MCR
command

0 to 65535

Delimiter
Space
Terminated
String

The delimiter for the track
number designators

Any 2
characters

ErrorPrefix
Space
Terminated
String

Text placed before an error
message

Up to 12
characters

Prefix
Space
Terminated
String

Unit-width of the barcode in
dots

Up to 12
characters

PostFix
Space
Terminated
String

Configuration options for
barcode

Up to 12
characters

Parameter

Sample Code

7.2 MCR-CAN

Function

MCR-CAN is used to abort an active MCR command. The command can be used
to abort sessions with the MUTLIPLE option in the MCR command, and also will
abort an MCR session with a timeout which has not yet expired.
Any reads attempted once MCR-CAN has been issued will be ignored. If a read
has occurred which has not yet been retrieved via the MCR-QUERY command,
that data will still be available via the MCR-QUERY command and is not cleared.
If no MCR session is active, the MCR-CAN command has no effect.
See the MCR command in the previous session for more information on the
MCR-CAN command.

Swift (iOS)

public func cpclMCRWithTimeout(timeout: Int,delimiter: String,

errorPrefix: String, prefix: String, postfix: String)

Sample Code

7.3 MCR-QUERY

Function

MCR-QUERY is used to obtain the result of a magnetic card reader swipe when

the MCR configuration command contains the QUERY option.
By default, the MCR command will return scanned card data directly to the host
as soon as the card is scanned. If this behavior is not desirable, the QUERY
option can be added to the MCR command to indicate that the MCR-QUERY

command is used to obtain the data on the card once it is scanned, rather than
sending it as soon as it is available.
The MCR-QUERY command will only return card data one time. As soon as it

returns the card data, the card data is cleared from the printer’s memory, so
issuing the command more than one time per card read will not work.
If you issue the MCR-QUERY command and there is no read data present, no

data will be returned by the printer.
In the case that the MULTIPLE option was specified in the MCR command along
with QUERY, it is possible that if the user scans multiple cards in the interval
between reads, reads can be lost. MCR- QUERY will only return the data for the

most recent scan in this case.

Swift (iOS)

Sample Code

8 File Commands

8.1 Define and Use Format Sessions

Function

DEFINE-FORMAT , or it alias DF is used to create formats for use with USE-FORMAT ,

or it’s alias UF, or for general use within the printer. The format of the sessions is as
follows.

Swift (iOS)

public func cpclMCRCan()

public func cpclMCRQuery()

Field
Name

Description Type Valid Range

Filename
The name of a filename
to create on the file
system.

Terminated
String

38 alpha-numeric
characters plus drive letter
and period for extension

Parameter

Sample Code (Swift)

8.2 Delete

Function

DELETE is used to remove a file from disk. The file to be deleted can either be on

the E drive or the R drive. All files on these drives can be deleted.

Swift (iOS)

Parameter

public func cpclDefineFormat(filename: String)

public func cpclUseFormat(filename: String)

cpclDefineFormat("SHELF.FMT")

cpclLabel(offset: 0, hRes: 200, vRes: 200, height: 250, quantity: 1)

cpclCenter()

cpclText(rotate: 0, font: 4, fontSize: 3, x: 0, y: 15, text: "\\")

cpclText(rotate: 0, font: 4, fontSize: 0, x: 0, y: 75, text: "\\")

cpclBarcode(type: CPCLBarcodeType.UPCA.rawValue, width: 1, ratio: 1,

height: 40, x: 0, y: 135, barcode: "\\")

cpclText(rotate: 0, font: 4, fontSize: 0, x: 0, y: 195, text: "\\")

cpclForm()

cpclPrint()

cpclUseFormat("SHELF.FMT")

cpclInsertTextLine("$22.99")

cpclInsertTextLine("sweatshirt")

cpclInsertTextLine("40123456789")

public func cpclFileDelete(filename: String)

Parameter Type Description
Valid
Range

FileName
CR-LF Terminated
String

The name of the file to
delete

See below

Sample Code

8.3 Dir

Function

DIR is used to retrieve a listing of the files on the E drive and R drive of the printer.

The files are returned in a list format with the file name on the left side and the file
size on the right side. Files on the R drive are represented by the presence of (r) after
their file name. The files are displayed in the order they were loaded on to their
respective drive. The R drive files always appear last on the list.

Swift (iOS)

Sample Code

8.4 End

Function

The END command, when used in a DEFINE-FILE or DF session instructs

the printer to terminate the session and close the file being defined.
This command is an alternative to the PRINT command, which closes file after
writing the PRINT command to the file.
This command is quite commonly used when defining batch files for the printer,
as they typically contain only configuration commands, and not any material to
be printed.

Swift (iOS)

Sample Code

8.5 File

public func cpclFileDir()

public func cpclFileEnd()

Function

The FILE command has two functions. The first is the ability to rename

existing files, similar to the file.rename SGD. The second function is the ability to
calculate a CRC16 on an existing file on the printer.
Either or both of the options may be specified in any order, though the new file
name must follow the RENAME command.

Swift (iOS)

Parameter Description Valid Range

FileName
The name of the file to
operate on

up to 38 characters with a 5
character extension after the dot

NewFileName
The new name of the file if
using the RENAME option

up to 38 characters with a 5
character extension after the dot

Parameter

Sample Code

8.6 Type

Function

The type command is used instruct the printer to transmit the contents of a file
to the host. The file will be transmitted on the same port on which the
command was received.
Not all files can be typed. The same rules apply to this command as do to the
file.type SGD. The following file extensions cannot be typed. An attempt to type
a file with any of these extensions will result in no data being returned.

Swift (iOS)

Parameter Description Valid Range

filename
The name of the file to
operate on

up to 38 characters with a 5 character
extension after the dot

Parameter

public func cpclRenameFile(oldFilename oldFilename: String,

newFilename: String)

public func cpclFileType(filename: String)

Sample Code

	CPCL iOS SDK Reference Guide
	Update
	1 Label Formatting Commands
	1.1 Label Sessions
	1.2 Barcode
	1.2.0 Barcode 1D
	1.2.1 Barocde Aztec
	1.2.2 Data Matrix
	1.2.3 DataBar(RSS) and CompositeBarcodes
	1.2.4 Maxicode
	1.2.5 PDF417
	1.2.6 QR Code

	1.3 Barcode Text
	1.4 Bat-Indicator
	1.5 Box
	1.6 CompressedGraphics
	1.7 Concat
	1.8 Count
	1.9 End/Print
	1.10 ExpandedGraphics
	1.11 FontGroup
	1.12 Image
	1.13 Centimeters, Dots, Inches, Millimeters
	1.14 Inverse Line
	1.15 Left, Center, Right
	1.16 Line
	1.17 Move
	1.18 Multi-Line
	1.19 Page Width
	1.20 Pattern
	1.21 PCX
	1.22 PCXMAG
	1.23 Persist
	1.24 Rotate
	1.25 Scale Text
	1.26 Scale To Fit
	1.27 Set Bold
	1.28 Set Mag
	1.29 Set Spacing
	1.30 Temp Move
	1.31 Text
	1.32 Page Type
	1.33 Background
	1.34 BackText
	1.35 Turn on Status
	1.36 PrinterStatus
	1.37 PrinterSN
	1.38 SetCodePage
	1.39 SetArabicTransform
	1.40 GetArabicTransformStatus
	1.41 SetThaiTransformStatus
	1.42 SetVietnameseTransform
	1.43 GetVietnameseTransformStatus

	2 Line Print Commands
	2.1 Left Margin
	2.2 LF equals CRLF (Line Print)
	2.3 Orient (Line Print)
	2.4 Line Print Position Adjust
	2.5 Set LF
	2.6 Set LP
	2.7 Set LP Buffer
	2.8 Set LP Timeout
	2.9 Set Position
	2.10 Line Feed
	2.11 Carriage Return
	2.12 Line Print Graphics

	3 Font Commands
	3.1 File Header
	3.2 Char Set And Country

	4 Media Management Commands
	4.1 Auto Cal
	4.2 Auto Pace
	4.3 Bar Sense
	4.4 Contrast
	4.5 Feed
	4.6 Form
	4.7 Gap Sense
	4.8 Journal
	4.9 Label
	4.10 Multi
	4.11 No Pace
	4.12 Out Of Paper
	4.13 Pace
	4.14 Paper Jam
	4.16 PostFeed/PreFeed
	4.17 Present AT
	4.18 Reverse
	4.19 Set Feed Length and Skip (Set FF)
	4.20 Set TOF
	4.21 Speed
	4.22 Tone
	4.23 Turn
	4.24 Form Feed

	5 Status Enquiry Commands
	5.1 Name
	5.2 Version
	5.3 Printer Status
	5.4 Extended Printer Status
	5.5 Get Version Information

	6 Utility and Diagnostic Commands
	6.1 Abort
	6.2 Baud
	6.3 Beep
	6.4 Capture
	6.5 Check Sum/Check Sum Vertical
	6.6 Char Count
	6.7 Delay Actions
	6.8 Display
	6.9 Dump
	6.10 Dump Image
	6.11 Get Date
	6.12 Get Time
	6.13 Get Var
	6.14 Line Terminator
	6.15 Max Label Height
	6.16 On Feed
	6.17 On Low Battery
	6.18 Re-Run
	6.19 Set Date
	6.29 Set Time
	6.30 Set Version
	6.31 Set Var and DO
	6.32 Timeout
	6.33 Wait
	6.34 Label Session Position
	6.35 Sound Printer Bell
	6.36 Backspace
	6.37 Get or Set CCL Key
	6.38 Send Two-Key Report to Host
	6.39 Send User Label Count
	6.40 Acknowledge Reset
	6.41 Shut Down Printer
	6.42 Print Two-Key Report

	7 Magnetic Card Reading Commands
	7.1 MCR
	7.2 MCR-CAN
	7.3 MCR-QUERY

	8 File Commands
	8.1 Define and Use Format Sessions
	8.2 Delete
	8.3 Dir
	8.4 End
	8.5 File
	8.6 Type

